# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import ConsisIDTransformer3DModel from ...testing_utils import ( enable_full_determinism, torch_device, ) from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class ConsisIDTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = ConsisIDTransformer3DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): batch_size = 2 num_channels = 4 num_frames = 1 height = 8 width = 8 embedding_dim = 8 sequence_length = 8 hidden_states = torch.randn((batch_size, num_frames, num_channels, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) id_vit_hidden = [torch.ones([batch_size, 2, 2]).to(torch_device)] * 1 id_cond = torch.ones(batch_size, 2).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, "id_vit_hidden": id_vit_hidden, "id_cond": id_cond, } @property def input_shape(self): return (1, 4, 8, 8) @property def output_shape(self): return (1, 4, 8, 8) def prepare_init_args_and_inputs_for_common(self): init_dict = { "num_attention_heads": 2, "attention_head_dim": 8, "in_channels": 4, "out_channels": 4, "time_embed_dim": 2, "text_embed_dim": 8, "num_layers": 1, "sample_width": 8, "sample_height": 8, "sample_frames": 8, "patch_size": 2, "temporal_compression_ratio": 4, "max_text_seq_length": 8, "cross_attn_interval": 1, "is_kps": False, "is_train_face": True, "cross_attn_dim_head": 1, "cross_attn_num_heads": 1, "LFE_id_dim": 2, "LFE_vit_dim": 2, "LFE_depth": 5, "LFE_dim_head": 8, "LFE_num_heads": 2, "LFE_num_id_token": 1, "LFE_num_querie": 1, "LFE_output_dim": 10, "LFE_ff_mult": 1, "LFE_num_scale": 1, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"ConsisIDTransformer3DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set)