# Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import unittest import torch from transformers import AutoTokenizer, T5EncoderModel from diffusers import ( AutoencoderKLWan, FlowMatchEulerDiscreteScheduler, WanPipeline, WanTransformer3DModel, ) from ..testing_utils import ( floats_tensor, require_peft_backend, skip_mps, ) sys.path.append(".") from .utils import PeftLoraLoaderMixinTests # noqa: E402 @require_peft_backend @skip_mps class WanLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests): pipeline_class = WanPipeline scheduler_cls = FlowMatchEulerDiscreteScheduler scheduler_classes = [FlowMatchEulerDiscreteScheduler] scheduler_kwargs = {} transformer_kwargs = { "patch_size": (1, 2, 2), "num_attention_heads": 2, "attention_head_dim": 12, "in_channels": 16, "out_channels": 16, "text_dim": 32, "freq_dim": 256, "ffn_dim": 32, "num_layers": 2, "cross_attn_norm": True, "qk_norm": "rms_norm_across_heads", "rope_max_seq_len": 32, } transformer_cls = WanTransformer3DModel vae_kwargs = { "base_dim": 3, "z_dim": 16, "dim_mult": [1, 1, 1, 1], "num_res_blocks": 1, "temperal_downsample": [False, True, True], } vae_cls = AutoencoderKLWan has_two_text_encoders = True tokenizer_cls, tokenizer_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5" text_encoder_cls, text_encoder_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5" text_encoder_target_modules = ["q", "k", "v", "o"] @property def output_shape(self): return (1, 9, 32, 32, 3) def get_dummy_inputs(self, with_generator=True): batch_size = 1 sequence_length = 16 num_channels = 4 num_frames = 9 num_latent_frames = 3 # (num_frames - 1) // temporal_compression_ratio + 1 sizes = (4, 4) generator = torch.manual_seed(0) noise = floats_tensor((batch_size, num_latent_frames, num_channels) + sizes) input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) pipeline_inputs = { "prompt": "", "num_frames": num_frames, "num_inference_steps": 1, "guidance_scale": 6.0, "height": 32, "width": 32, "max_sequence_length": sequence_length, "output_type": "np", } if with_generator: pipeline_inputs.update({"generator": generator}) return noise, input_ids, pipeline_inputs def test_simple_inference_with_text_lora_denoiser_fused_multi(self): super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3) def test_simple_inference_with_text_denoiser_lora_unfused(self): super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3) @unittest.skip("Not supported in Wan.") def test_simple_inference_with_text_denoiser_block_scale(self): pass @unittest.skip("Not supported in Wan.") def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self): pass @unittest.skip("Not supported in Wan.") def test_modify_padding_mode(self): pass @unittest.skip("Text encoder LoRA is not supported in Wan.") def test_simple_inference_with_partial_text_lora(self): pass @unittest.skip("Text encoder LoRA is not supported in Wan.") def test_simple_inference_with_text_lora(self): pass @unittest.skip("Text encoder LoRA is not supported in Wan.") def test_simple_inference_with_text_lora_and_scale(self): pass @unittest.skip("Text encoder LoRA is not supported in Wan.") def test_simple_inference_with_text_lora_fused(self): pass @unittest.skip("Text encoder LoRA is not supported in Wan.") def test_simple_inference_with_text_lora_save_load(self): pass