# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import unittest import torch from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer from diffusers import ( AutoencoderKLQwenImage, FlowMatchEulerDiscreteScheduler, QwenImagePipeline, QwenImageTransformer2DModel, ) from ..testing_utils import floats_tensor, require_peft_backend sys.path.append(".") from .utils import PeftLoraLoaderMixinTests # noqa: E402 @require_peft_backend class QwenImageLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests): pipeline_class = QwenImagePipeline scheduler_cls = FlowMatchEulerDiscreteScheduler scheduler_classes = [FlowMatchEulerDiscreteScheduler] scheduler_kwargs = {} transformer_kwargs = { "patch_size": 2, "in_channels": 16, "out_channels": 4, "num_layers": 2, "attention_head_dim": 16, "num_attention_heads": 3, "joint_attention_dim": 16, "guidance_embeds": False, "axes_dims_rope": (8, 4, 4), } transformer_cls = QwenImageTransformer2DModel z_dim = 4 vae_kwargs = { "base_dim": z_dim * 6, "z_dim": z_dim, "dim_mult": [1, 2, 4], "num_res_blocks": 1, "temperal_downsample": [False, True], "latents_mean": [0.0] * 4, "latents_std": [1.0] * 4, } vae_cls = AutoencoderKLQwenImage tokenizer_cls, tokenizer_id = Qwen2Tokenizer, "hf-internal-testing/tiny-random-Qwen25VLForCondGen" text_encoder_cls, text_encoder_id = ( Qwen2_5_VLForConditionalGeneration, "hf-internal-testing/tiny-random-Qwen25VLForCondGen", ) denoiser_target_modules = ["to_q", "to_k", "to_v", "to_out.0"] @property def output_shape(self): return (1, 8, 8, 3) def get_dummy_inputs(self, with_generator=True): batch_size = 1 sequence_length = 10 num_channels = 4 sizes = (32, 32) generator = torch.manual_seed(0) noise = floats_tensor((batch_size, num_channels) + sizes) input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) pipeline_inputs = { "prompt": "A painting of a squirrel eating a burger", "num_inference_steps": 4, "guidance_scale": 0.0, "height": 8, "width": 8, "output_type": "np", } if with_generator: pipeline_inputs.update({"generator": generator}) return noise, input_ids, pipeline_inputs @unittest.skip("Not supported in Qwen Image.") def test_simple_inference_with_text_denoiser_block_scale(self): pass @unittest.skip("Not supported in Qwen Image.") def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self): pass @unittest.skip("Not supported in Qwen Image.") def test_modify_padding_mode(self): pass @unittest.skip("Text encoder LoRA is not supported in Qwen Image.") def test_simple_inference_with_partial_text_lora(self): pass @unittest.skip("Text encoder LoRA is not supported in Qwen Image.") def test_simple_inference_with_text_lora(self): pass @unittest.skip("Text encoder LoRA is not supported in Qwen Image.") def test_simple_inference_with_text_lora_and_scale(self): pass @unittest.skip("Text encoder LoRA is not supported in Qwen Image.") def test_simple_inference_with_text_lora_fused(self): pass @unittest.skip("Text encoder LoRA is not supported in Qwen Image.") def test_simple_inference_with_text_lora_save_load(self): pass