# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import unittest import torch from transformers import AutoTokenizer, UMT5EncoderModel from diffusers import ( AuraFlowPipeline, AuraFlowTransformer2DModel, FlowMatchEulerDiscreteScheduler, ) from ..testing_utils import ( floats_tensor, is_peft_available, require_peft_backend, ) if is_peft_available(): pass sys.path.append(".") from .utils import PeftLoraLoaderMixinTests # noqa: E402 @require_peft_backend class AuraFlowLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests): pipeline_class = AuraFlowPipeline scheduler_cls = FlowMatchEulerDiscreteScheduler scheduler_classes = [FlowMatchEulerDiscreteScheduler] scheduler_kwargs = {} transformer_kwargs = { "sample_size": 64, "patch_size": 1, "in_channels": 4, "num_mmdit_layers": 1, "num_single_dit_layers": 1, "attention_head_dim": 16, "num_attention_heads": 2, "joint_attention_dim": 32, "caption_projection_dim": 32, "pos_embed_max_size": 64, } transformer_cls = AuraFlowTransformer2DModel vae_kwargs = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "block_out_channels": (4,), "layers_per_block": 1, "latent_channels": 4, "norm_num_groups": 1, "use_quant_conv": False, "use_post_quant_conv": False, "shift_factor": 0.0609, "scaling_factor": 1.5035, } tokenizer_cls, tokenizer_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5" text_encoder_cls, text_encoder_id = UMT5EncoderModel, "hf-internal-testing/tiny-random-umt5" text_encoder_target_modules = ["q", "k", "v", "o"] denoiser_target_modules = ["to_q", "to_k", "to_v", "to_out.0", "linear_1"] @property def output_shape(self): return (1, 8, 8, 3) def get_dummy_inputs(self, with_generator=True): batch_size = 1 sequence_length = 10 num_channels = 4 sizes = (32, 32) generator = torch.manual_seed(0) noise = floats_tensor((batch_size, num_channels) + sizes) input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) pipeline_inputs = { "prompt": "A painting of a squirrel eating a burger", "num_inference_steps": 4, "guidance_scale": 0.0, "height": 8, "width": 8, "output_type": "np", } if with_generator: pipeline_inputs.update({"generator": generator}) return noise, input_ids, pipeline_inputs @unittest.skip("Not supported in AuraFlow.") def test_simple_inference_with_text_denoiser_block_scale(self): pass @unittest.skip("Not supported in AuraFlow.") def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self): pass @unittest.skip("Not supported in AuraFlow.") def test_modify_padding_mode(self): pass @unittest.skip("Text encoder LoRA is not supported in AuraFlow.") def test_simple_inference_with_partial_text_lora(self): pass @unittest.skip("Text encoder LoRA is not supported in AuraFlow.") def test_simple_inference_with_text_lora(self): pass @unittest.skip("Text encoder LoRA is not supported in AuraFlow.") def test_simple_inference_with_text_lora_and_scale(self): pass @unittest.skip("Text encoder LoRA is not supported in AuraFlow.") def test_simple_inference_with_text_lora_fused(self): pass @unittest.skip("Text encoder LoRA is not supported in AuraFlow.") def test_simple_inference_with_text_lora_save_load(self): pass