# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device from ...test_pipelines_common import PipelineTesterMixin torch.backends.cuda.matmul.allow_tf32 = False class VersatileDiffusionImageVariationPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pass @slow @require_torch_gpu class VersatileDiffusionImageVariationPipelineIntegrationTests(unittest.TestCase): def test_inference_image_variations(self): pipe = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion") pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) image_prompt = load_image( "https://raw.githubusercontent.com/SHI-Labs/Versatile-Diffusion/master/assets/benz.jpg" ) generator = torch.Generator(device=torch_device).manual_seed(0) image = pipe( image=image_prompt, generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy", ).images image_slice = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.1205, 0.1914, 0.2289, 0.0883, 0.1595, 0.1683, 0.0703, 0.1493, 0.1298]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2