# ModularPipeline [`ModularPipeline`] converts [`~modular_pipelines.ModularPipelineBlocks`]'s into an executable pipeline that loads models and performs the computation steps defined in the block. It is the main interface for running a pipeline and it is very similar to the [`DiffusionPipeline`] API. The main difference is to include an expected `output` argument in the pipeline. ```py import torch from diffusers.modular_pipelines import SequentialPipelineBlocks from diffusers.modular_pipelines.stable_diffusion_xl import TEXT2IMAGE_BLOCKS blocks = SequentialPipelineBlocks.from_blocks_dict(TEXT2IMAGE_BLOCKS) modular_repo_id = "YiYiXu/modular-loader-t2i-0704" pipeline = blocks.init_pipeline(modular_repo_id) pipeline.load_components(torch_dtype=torch.float16) pipeline.to("cuda") image = pipeline(prompt="Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", output="images")[0] image.save("modular_t2i_out.png") ``` ```py import torch from diffusers.modular_pipelines import SequentialPipelineBlocks from diffusers.modular_pipelines.stable_diffusion_xl import IMAGE2IMAGE_BLOCKS blocks = SequentialPipelineBlocks.from_blocks_dict(IMAGE2IMAGE_BLOCKS) modular_repo_id = "YiYiXu/modular-loader-t2i-0704" pipeline = blocks.init_pipeline(modular_repo_id) pipeline.load_components(torch_dtype=torch.float16) pipeline.to("cuda") url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-text2img.png" init_image = load_image(url) prompt = "a dog catching a frisbee in the jungle" image = pipeline(prompt=prompt, image=init_image, strength=0.8, output="images")[0] image.save("modular_i2i_out.png") ``` ```py import torch from diffusers.modular_pipelines import SequentialPipelineBlocks from diffusers.modular_pipelines.stable_diffusion_xl import INPAINT_BLOCKS from diffusers.utils import load_image blocks = SequentialPipelineBlocks.from_blocks_dict(INPAINT_BLOCKS) modular_repo_id = "YiYiXu/modular-loader-t2i-0704" pipeline = blocks.init_pipeline(modular_repo_id) pipeline.load_components(torch_dtype=torch.float16) pipeline.to("cuda") img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-text2img.png" mask_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-inpaint-mask.png" init_image = load_image(img_url) mask_image = load_image(mask_url) prompt = "A deep sea diver floating" image = pipeline(prompt=prompt, image=init_image, mask_image=mask_image, strength=0.85, output="images")[0] image.save("moduar_inpaint_out.png") ``` This guide will show you how to create a [`ModularPipeline`] and manage the components in it. ## Adding blocks Blocks are [`InsertableDict`] objects that can be inserted at specific positions, providing a flexible way to mix-and-match blocks. Use [`~modular_pipelines.modular_pipeline_utils.InsertableDict.insert`] on either the block class or `sub_blocks` attribute to add a block. ```py # BLOCKS is dict of block classes, you need to add class to it BLOCKS.insert("block_name", BlockClass, index) # sub_blocks attribute contains instance, add a block instance to the attribute t2i_blocks.sub_blocks.insert("block_name", block_instance, index) ``` Use [`~modular_pipelines.modular_pipeline_utils.InsertableDict.pop`] on either the block class or `sub_blocks` attribute to remove a block. ```py # remove a block class from preset BLOCKS.pop("text_encoder") # split out a block instance on its own text_encoder_block = t2i_blocks.sub_blocks.pop("text_encoder") ``` Swap blocks by setting the existing block to the new block. ```py # Replace block class in preset BLOCKS["prepare_latents"] = CustomPrepareLatents # Replace in sub_blocks attribute using an block instance t2i_blocks.sub_blocks["prepare_latents"] = CustomPrepareLatents() ``` ## Creating a pipeline There are two ways to create a [`ModularPipeline`]. Assemble and create a pipeline from [`ModularPipelineBlocks`] or load an existing pipeline with [`~ModularPipeline.from_pretrained`]. You should also initialize a [`ComponentsManager`] to handle device placement and memory and component management. > [!TIP] > Refer to the [ComponentsManager](./components_manager) doc for more details about how it can help manage components across different workflows. Use the [`~ModularPipelineBlocks.init_pipeline`] method to create a [`ModularPipeline`] from the component and configuration specifications. This method loads the *specifications* from a `modular_model_index.json` file, but it doesn't load the *models* yet. ```py from diffusers import ComponentsManager from diffusers.modular_pipelines import SequentialPipelineBlocks from diffusers.modular_pipelines.stable_diffusion_xl import TEXT2IMAGE_BLOCKS t2i_blocks = SequentialPipelineBlocks.from_blocks_dict(TEXT2IMAGE_BLOCKS) modular_repo_id = "YiYiXu/modular-loader-t2i-0704" components = ComponentsManager() t2i_pipeline = t2i_blocks.init_pipeline(modular_repo_id, components_manager=components) ``` The [`~ModularPipeline.from_pretrained`] method creates a [`ModularPipeline`] from a modular repository on the Hub. ```py from diffusers import ModularPipeline, ComponentsManager components = ComponentsManager() pipeline = ModularPipeline.from_pretrained("YiYiXu/modular-loader-t2i-0704", components_manager=components) ``` Add the `trust_remote_code` argument to load a custom [`ModularPipeline`]. ```py from diffusers import ModularPipeline, ComponentsManager components = ComponentsManager() modular_repo_id = "YiYiXu/modular-diffdiff-0704" diffdiff_pipeline = ModularPipeline.from_pretrained(modular_repo_id, trust_remote_code=True, components_manager=components) ``` ## Loading components A [`ModularPipeline`] doesn't automatically instantiate with components. It only loads the configuration and component specifications. You can load all components with [`~ModularPipeline.load_components`] or only load specific components with [`~ModularPipeline.load_components`]. ```py import torch t2i_pipeline.load_components(torch_dtype=torch.float16) t2i_pipeline.to("cuda") ``` The example below only loads the UNet and VAE. ```py import torch t2i_pipeline.load_components(names=["unet", "vae"], torch_dtype=torch.float16) ``` Print the pipeline to inspect the loaded pretrained components. ```py t2i_pipeline ``` This should match the `modular_model_index.json` file from the modular repository a pipeline is initialized from. If a pipeline doesn't need a component, it won't be included even if it exists in the modular repository. To modify where components are loaded from, edit the `modular_model_index.json` file in the repository and change it to your desired loading path. The example below loads a UNet from a different repository. ```json # original "unet": [ null, null, { "repo": "stabilityai/stable-diffusion-xl-base-1.0", "subfolder": "unet", "variant": "fp16" } ] # modified "unet": [ null, null, { "repo": "RunDiffusion/Juggernaut-XL-v9", "subfolder": "unet", "variant": "fp16" } ] ``` ### Component loading status The pipeline properties below provide more information about which components are loaded. Use `component_names` to return all expected components. ```py t2i_pipeline.component_names ['text_encoder', 'text_encoder_2', 'tokenizer', 'tokenizer_2', 'guider', 'scheduler', 'unet', 'vae', 'image_processor'] ``` Use `null_component_names` to return components that aren't loaded yet. Load these components with [`~ModularPipeline.from_pretrained`]. ```py t2i_pipeline.null_component_names ['text_encoder', 'text_encoder_2', 'tokenizer', 'tokenizer_2', 'scheduler'] ``` Use `pretrained_component_names` to return components that will be loaded from pretrained models. ```py t2i_pipeline.pretrained_component_names ['text_encoder', 'text_encoder_2', 'tokenizer', 'tokenizer_2', 'scheduler', 'unet', 'vae'] ``` Use `config_component_names` to return components that are created with the default config (not loaded from a modular repository). Components from a config aren't included because they are already initialized during pipeline creation. This is why they aren't listed in `null_component_names`. ```py t2i_pipeline.config_component_names ['guider', 'image_processor'] ``` ## Updating components Components may be updated depending on whether it is a *pretrained component* or a *config component*. > [!WARNING] > A component may change from pretrained to config when updating a component. The component type is initially defined in a block's `expected_components` field. A pretrained component is updated with [`ComponentSpec`] whereas a config component is updated by eihter passing the object directly or with [`ComponentSpec`]. The [`ComponentSpec`] shows `default_creation_method="from_pretrained"` for a pretrained component shows `default_creation_method="from_config` for a config component. To update a pretrained component, create a [`ComponentSpec`] with the name of the component and where to load it from. Use the [`~ComponentSpec.load`] method to load the component. ```py from diffusers import ComponentSpec, UNet2DConditionModel unet_spec = ComponentSpec(name="unet",type_hint=UNet2DConditionModel, repo="stabilityai/stable-diffusion-xl-base-1.0", subfolder="unet", variant="fp16") unet = unet_spec.load(torch_dtype=torch.float16) ``` The [`~ModularPipeline.update_components`] method replaces the component with a new one. ```py t2i_pipeline.update_components(unet=unet2) ``` When a component is updated, the loading specifications are also updated in the pipeline config. ### Component extraction and modification When you use [`~ComponentSpec.load`], the new component maintains its loading specifications. This makes it possible to extract the specification and recreate the component. ```py spec = ComponentSpec.from_component("unet", unet2) spec ComponentSpec(name='unet', type_hint=, description=None, config=None, repo='stabilityai/stable-diffusion-xl-base-1.0', subfolder='unet', variant='fp16', revision=None, default_creation_method='from_pretrained') unet2_recreated = spec.load(torch_dtype=torch.float16) ``` The [`~ModularPipeline.get_component_spec`] method gets a copy of the current component specification to modify or update. ```py unet_spec = t2i_pipeline.get_component_spec("unet") unet_spec ComponentSpec( name='unet', type_hint=, repo='RunDiffusion/Juggernaut-XL-v9', subfolder='unet', variant='fp16', default_creation_method='from_pretrained' ) # modify to load from a different repository unet_spec.repo = "stabilityai/stable-diffusion-xl-base-1.0" # load component with modified spec unet = unet_spec.load(torch_dtype=torch.float16) ``` ## Modular repository A repository is required if the pipeline blocks use *pretrained components*. The repository supplies loading specifications and metadata. [`ModularPipeline`] specifically requires *modular repositories* (see [example repository](https://huggingface.co/YiYiXu/modular-diffdiff)) which are more flexible than a typical repository. It contains a `modular_model_index.json` file containing the following 3 elements. - `library` and `class` shows which library the component was loaded from and it's class. If `null`, the component hasn't been loaded yet. - `loading_specs_dict` contains the information required to load the component such as the repository and subfolder it is loaded from. Unlike standard repositories, a modular repository can fetch components from different repositories based on the `loading_specs_dict`. Components don't need to exist in the same repository. A modular repository may contain custom code for loading a [`ModularPipeline`]. This allows you to use specialized blocks that aren't native to Diffusers. ``` modular-diffdiff-0704/ ├── block.py # Custom pipeline blocks implementation ├── config.json # Pipeline configuration and auto_map └── modular_model_index.json # Component loading specifications ``` The [config.json](https://huggingface.co/YiYiXu/modular-diffdiff-0704/blob/main/config.json) file contains an `auto_map` key that points to where a custom block is defined in `block.py`. ```json { "_class_name": "DiffDiffBlocks", "auto_map": { "ModularPipelineBlocks": "block.DiffDiffBlocks" } } ```