# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import HiDreamImageTransformer2DModel from ...testing_utils import ( enable_full_determinism, torch_device, ) from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class HiDreamTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = HiDreamImageTransformer2DModel main_input_name = "hidden_states" model_split_percents = [0.8, 0.8, 0.9] @property def dummy_input(self): batch_size = 2 num_channels = 4 height = width = 32 embedding_dim_t5, embedding_dim_llama, embedding_dim_pooled = 8, 4, 8 sequence_length = 8 hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device) encoder_hidden_states_t5 = torch.randn((batch_size, sequence_length, embedding_dim_t5)).to(torch_device) encoder_hidden_states_llama3 = torch.randn((batch_size, batch_size, sequence_length, embedding_dim_llama)).to( torch_device ) pooled_embeds = torch.randn((batch_size, embedding_dim_pooled)).to(torch_device) timesteps = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states_t5": encoder_hidden_states_t5, "encoder_hidden_states_llama3": encoder_hidden_states_llama3, "pooled_embeds": pooled_embeds, "timesteps": timesteps, } @property def input_shape(self): return (4, 32, 32) @property def output_shape(self): return (4, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "patch_size": 2, "in_channels": 4, "out_channels": 4, "num_layers": 1, "num_single_layers": 1, "attention_head_dim": 8, "num_attention_heads": 4, "caption_channels": [8, 4], "text_emb_dim": 8, "num_routed_experts": 2, "num_activated_experts": 2, "axes_dims_rope": (4, 2, 2), "max_resolution": (32, 32), "llama_layers": (0, 1), "force_inference_output": True, # TODO: as we don't implement MoE loss in training tests. } inputs_dict = self.dummy_input return init_dict, inputs_dict @unittest.skip("HiDreamImageTransformer2DModel uses a dedicated attention processor. This test doesn't apply") def test_set_attn_processor_for_determinism(self): pass def test_gradient_checkpointing_is_applied(self): expected_set = {"HiDreamImageTransformer2DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set)