1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00
Commit Graph

6 Commits

Author SHA1 Message Date
Will Berman
67ec9cf513 accelerate min version for ProjectConfiguration import (#3042) 2023-04-11 10:12:28 -07:00
Lucain
bcb476797c Remove modelcards dependency (#2050)
* Switch to huggingface_hub.ModelCard

* Remove modelcards dependency in favor of Jinja2
2023-01-20 16:39:42 +01:00
Haofan Wang
f1b726e46e Update requirements.txt (#1623)
* Update requirements.txt

* Update requirements_flax.txt

* Update requirements.txt

* Update requirements_flax.txt

* Update requirements.txt

* Update requirements_flax.txt
2022-12-09 08:35:27 +01:00
Suraj Patil
c228331068 [examples] add check_min_version (#1550)
* add check_min_version for examples

* move __version__ to the top

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* fix comment

* fix error_message

* adapt the install message

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-12-06 14:36:50 +01:00
Suraj Patil
210be4fe71 [examples] update transfomers version (#665)
update transfomrers version in example
2022-09-29 11:16:28 +02:00
Suraj Patil
d0d3e24ec1 Textual inversion (#266)
* add textual inversion script

* make the loop work

* make coarse_loss optional

* save pipeline after training

* add arg pretrained_model_name_or_path

* fix saving

* fix gradient_accumulation_steps

* style

* fix progress bar steps

* scale lr

* add argument to accept style

* remove unused args

* scale lr using num gpus

* load tokenizer using args

* add checks when converting init token to id

* improve commnets and style

* document args

* more cleanup

* fix default adamw arsg

* TextualInversionWrapper -> CLIPTextualInversionWrapper

* fix tokenizer loading

* Use the CLIPTextModel instead of wrapper

* clean dataset

* remove commented code

* fix accessing grads for multi-gpu

* more cleanup

* fix saving on multi-GPU

* init_placeholder_token_embeds

* add seed

* fix flip

* fix multi-gpu

* add utility methods in wrapper

* remove ipynb

* don't use wrapper

* dont pass vae an dunet to accelerate prepare

* bring back accelerator.accumulate

* scale latents

* use only one progress bar for steps

* push_to_hub at the end of training

* remove unused args

* log some important stats

* store args in tensorboard

* pretty comments

* save the trained embeddings

* mobe the script up

* add requirements file

* more cleanup

* fux typo

* begin readme

* style -> learnable_property

* keep vae and unet in eval mode

* address review comments

* address more comments

* removed unused args

* add train command in readme

* update readme
2022-09-02 14:23:52 +05:30