diff --git a/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py b/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py index 2b8792e09c..75e1644f61 100644 --- a/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +++ b/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py @@ -434,7 +434,6 @@ class KandinskyV22PriorEmb2EmbPipeline(DiffusionPipeline): num_images_per_prompt: int = 1, num_inference_steps: int = 25, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, - latents: Optional[torch.FloatTensor] = None, guidance_scale: float = 4.0, output_type: Optional[str] = "pt", # pt only return_dict: bool = True, @@ -462,10 +461,6 @@ class KandinskyV22PriorEmb2EmbPipeline(DiffusionPipeline): generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. - latents (`torch.FloatTensor`, *optional*): - Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image - generation. Can be used to tweak the same generation with different prompts. If not provided, a latents - tensor will ge generated by sampling using the supplied random `generator`. guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen diff --git a/tests/pipelines/kandinsky_v22/test_kandinsky_prior_emb2emb.py b/tests/pipelines/kandinsky_v22/test_kandinsky_prior_emb2emb.py index 8e8caec181..75d101e9c1 100644 --- a/tests/pipelines/kandinsky_v22/test_kandinsky_prior_emb2emb.py +++ b/tests/pipelines/kandinsky_v22/test_kandinsky_prior_emb2emb.py @@ -48,7 +48,6 @@ class KandinskyV22PriorEmb2EmbPipelineFastTests(PipelineTesterMixin, unittest.Te "strength", "generator", "num_inference_steps", - "latents", "negative_prompt", "guidance_scale", "output_type",