diff --git a/docs/source/en/using-diffusers/ip_adapter.md b/docs/source/en/using-diffusers/ip_adapter.md index 0df1e0e7a0..fdb45c5b63 100644 --- a/docs/source/en/using-diffusers/ip_adapter.md +++ b/docs/source/en/using-diffusers/ip_adapter.md @@ -48,10 +48,10 @@ Create a text prompt and load an image prompt before passing them to the pipelin image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_diner.png") generator = torch.Generator(device="cpu").manual_seed(0) images = pipeline( - prompt="a polar bear sitting in a chair drinking a milkshake", + prompt="a polar bear sitting in a chair drinking a milkshake", ip_adapter_image=image, negative_prompt="deformed, ugly, wrong proportion, low res, bad anatomy, worst quality, low quality", - num_inference_steps=100, + num_inference_steps=100, generator=generator, ).images images[0] @@ -270,7 +270,7 @@ generator = torch.Generator(device="cpu").manual_seed(26) image = pipeline( prompt="A photo of Einstein as a chef, wearing an apron, cooking in a French restaurant", ip_adapter_image=image, - negative_prompt="lowres, bad anatomy, worst quality, low quality", + negative_prompt="lowres, bad anatomy, worst quality, low quality", num_inference_steps=100, generator=generator, ).images[0] @@ -304,7 +304,7 @@ from transformers import CLIPVisionModelWithProjection from diffusers.utils import load_image image_encoder = CLIPVisionModelWithProjection.from_pretrained( - "h94/IP-Adapter", + "h94/IP-Adapter", subfolder="models/image_encoder", torch_dtype=torch.float16, ) @@ -323,8 +323,8 @@ pipeline = AutoPipelineForText2Image.from_pretrained( ) pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config) pipeline.load_ip_adapter( - "h94/IP-Adapter", - subfolder="sdxl_models", + "h94/IP-Adapter", + subfolder="sdxl_models", weight_name=["ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus-face_sdxl_vit-h.safetensors"] ) pipeline.set_ip_adapter_scale([0.7, 0.3]) @@ -336,7 +336,7 @@ Load an image prompt and a folder containing images of a certain style you want ```py face_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/women_input.png") style_folder = "https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy" -style_images = [load_image(f"{style_folder}/img{i}.png") for i in range(10)] +style_images = [load_image(f"{style_folder}/img{i}.png") for i in range(10)] ```