diff --git a/src/diffusers/loaders/single_file_utils.py b/src/diffusers/loaders/single_file_utils.py index 50ceb4b8cb..7d95f97b8b 100644 --- a/src/diffusers/loaders/single_file_utils.py +++ b/src/diffusers/loaders/single_file_utils.py @@ -169,7 +169,6 @@ DIFFUSERS_TO_LDM_MAPPING = { LDM_VAE_KEY = "first_stage_model." LDM_UNET_KEY = "model.diffusion_model." LDM_CONTROLNET_KEY = "control_model." -LDM_CLIP_CONFIG_NAME = "openai/clip-vit-large-patch14" LDM_CLIP_PREFIX_TO_REMOVE = ["cond_stage_model.transformer.", "conditioner.embedders.0.transformer."] LDM_OPEN_CLIP_TEXT_PROJECTION_DIM = 1024 @@ -237,23 +236,6 @@ def fetch_original_config(pipeline_class_name, checkpoint, original_config_file= return original_config -def load_checkpoint(checkpoint_path_or_dict, device=None, from_safetensors=True): - if device is None: - device = "cuda" if torch.cuda.is_available() else "cpu" - - if isinstance(checkpoint_path_or_dict, str): - if from_safetensors: - checkpoint = safe_load(checkpoint_path_or_dict, device="cpu") - - else: - checkpoint = torch.load(checkpoint_path_or_dict, map_location=device) - - elif isinstance(checkpoint_path_or_dict, dict): - checkpoint = checkpoint_path_or_dict - - return checkpoint - - def infer_model_type(original_config, model_type=None): if model_type is not None: return model_type @@ -918,9 +900,9 @@ def convert_ldm_vae_checkpoint(checkpoint, config): return new_checkpoint -def create_text_encoder_from_ldm_clip_checkpoint(checkpoint, local_files_only=False): +def create_text_encoder_from_ldm_clip_checkpoint(config_name, checkpoint, local_files_only=False): try: - config = CLIPTextConfig.from_pretrained(LDM_CLIP_CONFIG_NAME, local_files_only=local_files_only) + config = CLIPTextConfig.from_pretrained(config_name, local_files_only=local_files_only) except Exception: raise ValueError( f"With local_files_only set to {local_files_only}, you must first locally save the configuration in the following path: 'openai/clip-vit-large-patch14'." @@ -1178,7 +1160,7 @@ def create_text_encoders_and_tokenizers_from_ldm( try: config_name = "openai/clip-vit-large-patch14" tokenizer = CLIPTokenizer.from_pretrained(config_name, local_files_only=local_files_only) - text_encoder = create_text_encoder_from_ldm_clip_checkpoint(checkpoint, local_files_only=local_files_only) + text_encoder = create_text_encoder_from_ldm_clip_checkpoint(config_name, checkpoint, local_files_only=local_files_only) except Exception: raise ValueError(