1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

[WIP]Add Wan2.2 Animate Pipeline (Continuation of #12442 by tolgacangoz) (#12526)

---------

Co-authored-by: Tolga Cangöz <mtcangoz@gmail.com>
Co-authored-by: Tolga Cangöz <46008593+tolgacangoz@users.noreply.github.com>
This commit is contained in:
dg845
2025-11-12 18:52:31 -08:00
committed by GitHub
parent 44c3101685
commit d8e4805816
19 changed files with 3676 additions and 33 deletions

View File

@@ -6,11 +6,20 @@ import torch
from accelerate import init_empty_weights
from huggingface_hub import hf_hub_download, snapshot_download
from safetensors.torch import load_file
from transformers import AutoProcessor, AutoTokenizer, CLIPVisionModelWithProjection, UMT5EncoderModel
from transformers import (
AutoProcessor,
AutoTokenizer,
CLIPImageProcessor,
CLIPVisionModel,
CLIPVisionModelWithProjection,
UMT5EncoderModel,
)
from diffusers import (
AutoencoderKLWan,
UniPCMultistepScheduler,
WanAnimatePipeline,
WanAnimateTransformer3DModel,
WanImageToVideoPipeline,
WanPipeline,
WanTransformer3DModel,
@@ -105,8 +114,203 @@ VACE_TRANSFORMER_KEYS_RENAME_DICT = {
"after_proj": "proj_out",
}
ANIMATE_TRANSFORMER_KEYS_RENAME_DICT = {
"time_embedding.0": "condition_embedder.time_embedder.linear_1",
"time_embedding.2": "condition_embedder.time_embedder.linear_2",
"text_embedding.0": "condition_embedder.text_embedder.linear_1",
"text_embedding.2": "condition_embedder.text_embedder.linear_2",
"time_projection.1": "condition_embedder.time_proj",
"head.modulation": "scale_shift_table",
"head.head": "proj_out",
"modulation": "scale_shift_table",
"ffn.0": "ffn.net.0.proj",
"ffn.2": "ffn.net.2",
# Hack to swap the layer names
# The original model calls the norms in following order: norm1, norm3, norm2
# We convert it to: norm1, norm2, norm3
"norm2": "norm__placeholder",
"norm3": "norm2",
"norm__placeholder": "norm3",
"img_emb.proj.0": "condition_embedder.image_embedder.norm1",
"img_emb.proj.1": "condition_embedder.image_embedder.ff.net.0.proj",
"img_emb.proj.3": "condition_embedder.image_embedder.ff.net.2",
"img_emb.proj.4": "condition_embedder.image_embedder.norm2",
# Add attention component mappings
"self_attn.q": "attn1.to_q",
"self_attn.k": "attn1.to_k",
"self_attn.v": "attn1.to_v",
"self_attn.o": "attn1.to_out.0",
"self_attn.norm_q": "attn1.norm_q",
"self_attn.norm_k": "attn1.norm_k",
"cross_attn.q": "attn2.to_q",
"cross_attn.k": "attn2.to_k",
"cross_attn.v": "attn2.to_v",
"cross_attn.o": "attn2.to_out.0",
"cross_attn.norm_q": "attn2.norm_q",
"cross_attn.norm_k": "attn2.norm_k",
"cross_attn.k_img": "attn2.to_k_img",
"cross_attn.v_img": "attn2.to_v_img",
"cross_attn.norm_k_img": "attn2.norm_k_img",
# After cross_attn -> attn2 rename, we need to rename the img keys
"attn2.to_k_img": "attn2.add_k_proj",
"attn2.to_v_img": "attn2.add_v_proj",
"attn2.norm_k_img": "attn2.norm_added_k",
# Wan Animate-specific mappings (motion encoder, face encoder, face adapter)
# Motion encoder mappings
# The name mapping is complicated for the convolutional part so we handle that in its own function
"motion_encoder.enc.fc": "motion_encoder.motion_network",
"motion_encoder.dec.direction.weight": "motion_encoder.motion_synthesis_weight",
# Face encoder mappings - CausalConv1d has a .conv submodule that we need to flatten
"face_encoder.conv1_local.conv": "face_encoder.conv1_local",
"face_encoder.conv2.conv": "face_encoder.conv2",
"face_encoder.conv3.conv": "face_encoder.conv3",
# Face adapter mappings are handled in a separate function
}
# TODO: Verify this and simplify if possible.
def convert_animate_motion_encoder_weights(key: str, state_dict: Dict[str, Any], final_conv_idx: int = 8) -> None:
"""
Convert all motion encoder weights for Animate model.
In the original model:
- All Linear layers in fc use EqualLinear
- All Conv2d layers in convs use EqualConv2d (except blur_conv which is initialized separately)
- Blur kernels are stored as buffers in Sequential modules
- ConvLayer is nn.Sequential with indices: [Blur (optional), EqualConv2d, FusedLeakyReLU (optional)]
Conversion strategy:
1. Drop .kernel buffers (blur kernels)
2. Rename sequential indices to named components (e.g., 0 -> conv2d, 1 -> bias_leaky_relu)
"""
# Skip if not a weight, bias, or kernel
if ".weight" not in key and ".bias" not in key and ".kernel" not in key:
return
# Handle Blur kernel buffers from original implementation.
# After renaming, these appear under: motion_encoder.res_blocks.*.conv{2,skip}.blur_kernel
# Diffusers constructs blur kernels as a non-persistent buffer so we must drop these keys
if ".kernel" in key and "motion_encoder" in key:
# Remove unexpected blur kernel buffers to avoid strict load errors
state_dict.pop(key, None)
return
# Rename Sequential indices to named components in ConvLayer and ResBlock
if ".enc.net_app.convs." in key and (".weight" in key or ".bias" in key):
parts = key.split(".")
# Find the sequential index (digit) after convs or after conv1/conv2/skip
# Examples:
# - enc.net_app.convs.0.0.weight -> conv_in.weight (initial conv layer weight)
# - enc.net_app.convs.0.1.bias -> conv_in.act_fn.bias (initial conv layer bias)
# - enc.net_app.convs.{n:1-7}.conv1.0.weight -> res_blocks.{(n-1):0-6}.conv1.weight (conv1 weight)
# - e.g. enc.net_app.convs.1.conv1.0.weight -> res_blocks.0.conv1.weight
# - enc.net_app.convs.{n:1-7}.conv1.1.bias -> res_blocks.{(n-1):0-6}.conv1.act_fn.bias (conv1 bias)
# - e.g. enc.net_app.convs.1.conv1.1.bias -> res_blocks.0.conv1.act_fn.bias
# - enc.net_app.convs.{n:1-7}.conv2.1.weight -> res_blocks.{(n-1):0-6}.conv2.weight (conv2 weight)
# - enc.net_app.convs.1.conv2.2.bias -> res_blocks.0.conv2.act_fn.bias (conv2 bias)
# - enc.net_app.convs.{n:1-7}.skip.1.weight -> res_blocks.{(n-1):0-6}.conv_skip.weight (skip conv weight)
# - enc.net_app.convs.8 -> conv_out (final conv layer)
convs_idx = parts.index("convs") if "convs" in parts else -1
if convs_idx >= 0 and len(parts) - convs_idx >= 2:
bias = False
# The nn.Sequential index will always follow convs
sequential_idx = int(parts[convs_idx + 1])
if sequential_idx == 0:
if key.endswith(".weight"):
new_key = "motion_encoder.conv_in.weight"
elif key.endswith(".bias"):
new_key = "motion_encoder.conv_in.act_fn.bias"
bias = True
elif sequential_idx == final_conv_idx:
if key.endswith(".weight"):
new_key = "motion_encoder.conv_out.weight"
else:
# Intermediate .convs. layers, which get mapped to .res_blocks.
prefix = "motion_encoder.res_blocks."
layer_name = parts[convs_idx + 2]
if layer_name == "skip":
layer_name = "conv_skip"
if key.endswith(".weight"):
param_name = "weight"
elif key.endswith(".bias"):
param_name = "act_fn.bias"
bias = True
suffix_parts = [str(sequential_idx - 1), layer_name, param_name]
suffix = ".".join(suffix_parts)
new_key = prefix + suffix
param = state_dict.pop(key)
if bias:
param = param.squeeze()
state_dict[new_key] = param
return
return
return
def convert_animate_face_adapter_weights(key: str, state_dict: Dict[str, Any]) -> None:
"""
Convert face adapter weights for the Animate model.
The original model uses a fused KV projection but the diffusers models uses separate K and V projections.
"""
# Skip if not a weight or bias
if ".weight" not in key and ".bias" not in key:
return
prefix = "face_adapter."
if ".fuser_blocks." in key:
parts = key.split(".")
module_list_idx = parts.index("fuser_blocks") if "fuser_blocks" in parts else -1
if module_list_idx >= 0 and (len(parts) - 1) - module_list_idx == 3:
block_idx = parts[module_list_idx + 1]
layer_name = parts[module_list_idx + 2]
param_name = parts[module_list_idx + 3]
if layer_name == "linear1_kv":
layer_name_k = "to_k"
layer_name_v = "to_v"
suffix_k = ".".join([block_idx, layer_name_k, param_name])
suffix_v = ".".join([block_idx, layer_name_v, param_name])
new_key_k = prefix + suffix_k
new_key_v = prefix + suffix_v
kv_proj = state_dict.pop(key)
k_proj, v_proj = torch.chunk(kv_proj, 2, dim=0)
state_dict[new_key_k] = k_proj
state_dict[new_key_v] = v_proj
return
else:
if layer_name == "q_norm":
new_layer_name = "norm_q"
elif layer_name == "k_norm":
new_layer_name = "norm_k"
elif layer_name == "linear1_q":
new_layer_name = "to_q"
elif layer_name == "linear2":
new_layer_name = "to_out"
suffix_parts = [block_idx, new_layer_name, param_name]
suffix = ".".join(suffix_parts)
new_key = prefix + suffix
state_dict[new_key] = state_dict.pop(key)
return
return
TRANSFORMER_SPECIAL_KEYS_REMAP = {}
VACE_TRANSFORMER_SPECIAL_KEYS_REMAP = {}
ANIMATE_TRANSFORMER_SPECIAL_KEYS_REMAP = {
"motion_encoder": convert_animate_motion_encoder_weights,
"face_adapter": convert_animate_face_adapter_weights,
}
def update_state_dict_(state_dict: Dict[str, Any], old_key: str, new_key: str) -> Dict[str, Any]:
@@ -364,6 +568,37 @@ def get_transformer_config(model_type: str) -> Tuple[Dict[str, Any], ...]:
}
RENAME_DICT = TRANSFORMER_KEYS_RENAME_DICT
SPECIAL_KEYS_REMAP = TRANSFORMER_SPECIAL_KEYS_REMAP
elif model_type == "Wan2.2-Animate-14B":
config = {
"model_id": "Wan-AI/Wan2.2-Animate-14B",
"diffusers_config": {
"image_dim": 1280,
"added_kv_proj_dim": 5120,
"attention_head_dim": 128,
"cross_attn_norm": True,
"eps": 1e-06,
"ffn_dim": 13824,
"freq_dim": 256,
"in_channels": 36,
"num_attention_heads": 40,
"num_layers": 40,
"out_channels": 16,
"patch_size": (1, 2, 2),
"qk_norm": "rms_norm_across_heads",
"text_dim": 4096,
"rope_max_seq_len": 1024,
"pos_embed_seq_len": None,
"motion_encoder_size": 512, # Start of Wan Animate-specific configs
"motion_style_dim": 512,
"motion_dim": 20,
"motion_encoder_dim": 512,
"face_encoder_hidden_dim": 1024,
"face_encoder_num_heads": 4,
"inject_face_latents_blocks": 5,
},
}
RENAME_DICT = ANIMATE_TRANSFORMER_KEYS_RENAME_DICT
SPECIAL_KEYS_REMAP = ANIMATE_TRANSFORMER_SPECIAL_KEYS_REMAP
return config, RENAME_DICT, SPECIAL_KEYS_REMAP
@@ -380,10 +615,12 @@ def convert_transformer(model_type: str, stage: str = None):
original_state_dict = load_sharded_safetensors(model_dir)
with init_empty_weights():
if "VACE" not in model_type:
transformer = WanTransformer3DModel.from_config(diffusers_config)
else:
if "Animate" in model_type:
transformer = WanAnimateTransformer3DModel.from_config(diffusers_config)
elif "VACE" in model_type:
transformer = WanVACETransformer3DModel.from_config(diffusers_config)
else:
transformer = WanTransformer3DModel.from_config(diffusers_config)
for key in list(original_state_dict.keys()):
new_key = key[:]
@@ -397,7 +634,12 @@ def convert_transformer(model_type: str, stage: str = None):
continue
handler_fn_inplace(key, original_state_dict)
# Load state dict into the meta model, which will materialize the tensors
transformer.load_state_dict(original_state_dict, strict=True, assign=True)
# Move to CPU to ensure all tensors are materialized
transformer = transformer.to("cpu")
return transformer
@@ -926,7 +1168,7 @@ DTYPE_MAPPING = {
if __name__ == "__main__":
args = get_args()
if "Wan2.2" in args.model_type and "TI2V" not in args.model_type:
if "Wan2.2" in args.model_type and "TI2V" not in args.model_type and "Animate" not in args.model_type:
transformer = convert_transformer(args.model_type, stage="high_noise_model")
transformer_2 = convert_transformer(args.model_type, stage="low_noise_model")
else:
@@ -942,7 +1184,7 @@ if __name__ == "__main__":
tokenizer = AutoTokenizer.from_pretrained("google/umt5-xxl")
if "FLF2V" in args.model_type:
flow_shift = 16.0
elif "TI2V" in args.model_type:
elif "TI2V" in args.model_type or "Animate" in args.model_type:
flow_shift = 5.0
else:
flow_shift = 3.0
@@ -954,6 +1196,8 @@ if __name__ == "__main__":
if args.dtype != "none":
dtype = DTYPE_MAPPING[args.dtype]
transformer.to(dtype)
if transformer_2 is not None:
transformer_2.to(dtype)
if "Wan2.2" and "I2V" in args.model_type and "TI2V" not in args.model_type:
pipe = WanImageToVideoPipeline(
@@ -1016,6 +1260,21 @@ if __name__ == "__main__":
vae=vae,
scheduler=scheduler,
)
elif "Animate" in args.model_type:
image_encoder = CLIPVisionModel.from_pretrained(
"laion/CLIP-ViT-H-14-laion2B-s32B-b79K", torch_dtype=torch.bfloat16
)
image_processor = CLIPImageProcessor.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K")
pipe = WanAnimatePipeline(
transformer=transformer,
text_encoder=text_encoder,
tokenizer=tokenizer,
vae=vae,
scheduler=scheduler,
image_encoder=image_encoder,
image_processor=image_processor,
)
else:
pipe = WanPipeline(
transformer=transformer,