mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
@@ -70,41 +70,32 @@ pipeline = StableDiffusionPipeline.from_single_file(
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
#### LoRA files
|
||||
#### LoRAs
|
||||
|
||||
[LoRA](https://hf.co/docs/peft/conceptual_guides/adapter#low-rank-adaptation-lora) is a lightweight adapter that is fast and easy to train, making them especially popular for generating images in a certain way or style. These adapters are commonly stored in a safetensors file, and are widely popular on model sharing platforms like [civitai](https://civitai.com/).
|
||||
[LoRAs](../tutorials/using_peft_for_inference) are lightweight checkpoints fine-tuned to generate images or video in a specific style. If you are using a checkpoint trained with a Diffusers training script, the LoRA configuration is automatically saved as metadata in a safetensors file. When the safetensors file is loaded, the metadata is parsed to correctly configure the LoRA and avoids missing or incorrect LoRA configurations.
|
||||
|
||||
LoRAs are loaded into a base model with the [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] method.
|
||||
|
||||
```py
|
||||
from diffusers import StableDiffusionXLPipeline
|
||||
import torch
|
||||
|
||||
# base model
|
||||
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
||||
"Lykon/dreamshaper-xl-1-0", torch_dtype=torch.float16, variant="fp16"
|
||||
).to("cuda")
|
||||
|
||||
# download LoRA weights
|
||||
!wget https://civitai.com/api/download/models/168776 -O blueprintify.safetensors
|
||||
|
||||
# load LoRA weights
|
||||
pipeline.load_lora_weights(".", weight_name="blueprintify.safetensors")
|
||||
prompt = "bl3uprint, a highly detailed blueprint of the empire state building, explaining how to build all parts, many txt, blueprint grid backdrop"
|
||||
negative_prompt = "lowres, cropped, worst quality, low quality, normal quality, artifacts, signature, watermark, username, blurry, more than one bridge, bad architecture"
|
||||
|
||||
image = pipeline(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
generator=torch.manual_seed(0),
|
||||
).images[0]
|
||||
image
|
||||
```
|
||||
The easiest way to inspect the metadata, if available, is by clicking on the Safetensors logo next to the weights.
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/blueprint-lora.png"/>
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/safetensors_lora.png"/>
|
||||
</div>
|
||||
|
||||
For LoRAs that aren't trained with Diffusers, you can still save metadata with the `transformer_lora_adapter_metadata` and `text_encoder_lora_adapter_metadata` arguments in [`~loaders.FluxLoraLoaderMixin.save_lora_weights`] as long as it is a safetensors file.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from diffusers import FluxPipeline
|
||||
|
||||
pipeline = FluxPipeline.from_pretrained(
|
||||
"black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16
|
||||
).to("cuda")
|
||||
pipeline.load_lora_weights("linoyts/yarn_art_Flux_LoRA")
|
||||
pipeline.save_lora_weights(
|
||||
transformer_lora_adapter_metadata={"r": 16, "lora_alpha": 16},
|
||||
text_encoder_lora_adapter_metadata={"r": 8, "lora_alpha": 8}
|
||||
)
|
||||
```
|
||||
|
||||
### ckpt
|
||||
|
||||
> [!WARNING]
|
||||
|
||||
Reference in New Issue
Block a user