diff --git a/src/diffusers/loaders/lora_pipeline.py b/src/diffusers/loaders/lora_pipeline.py index 84ac85e7a9..4fb6eeb237 100644 --- a/src/diffusers/loaders/lora_pipeline.py +++ b/src/diffusers/loaders/lora_pipeline.py @@ -982,35 +982,7 @@ class StableDiffusionXLLoraLoaderMixin(LoraBaseMixin): **kwargs, ): r""" - Fuses the LoRA parameters into the original parameters of the corresponding blocks. - - - - This is an experimental API. - - - - Args: - components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. - lora_scale (`float`, defaults to 1.0): - Controls how much to influence the outputs with the LoRA parameters. - safe_fusing (`bool`, defaults to `False`): - Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. - adapter_names (`List[str]`, *optional*): - Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. - - Example: - - ```py - from diffusers import DiffusionPipeline - import torch - - pipeline = DiffusionPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 - ).to("cuda") - pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") - pipeline.fuse_lora(lora_scale=0.7) - ``` + See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details. """ super().fuse_lora( components=components, @@ -1341,35 +1313,7 @@ class SD3LoraLoaderMixin(LoraBaseMixin): **kwargs, ): r""" - Fuses the LoRA parameters into the original parameters of the corresponding blocks. - - - - This is an experimental API. - - - - Args: - components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. - lora_scale (`float`, defaults to 1.0): - Controls how much to influence the outputs with the LoRA parameters. - safe_fusing (`bool`, defaults to `False`): - Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. - adapter_names (`List[str]`, *optional*): - Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. - - Example: - - ```py - from diffusers import DiffusionPipeline - import torch - - pipeline = DiffusionPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 - ).to("cuda") - pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") - pipeline.fuse_lora(lora_scale=0.7) - ``` + See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details. """ super().fuse_lora( components=components, @@ -1602,35 +1546,7 @@ class AuraFlowLoraLoaderMixin(LoraBaseMixin): **kwargs, ): r""" - Fuses the LoRA parameters into the original parameters of the corresponding blocks. - - - - This is an experimental API. - - - - Args: - components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. - lora_scale (`float`, defaults to 1.0): - Controls how much to influence the outputs with the LoRA parameters. - safe_fusing (`bool`, defaults to `False`): - Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. - adapter_names (`List[str]`, *optional*): - Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. - - Example: - - ```py - from diffusers import DiffusionPipeline - import torch - - pipeline = DiffusionPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 - ).to("cuda") - pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") - pipeline.fuse_lora(lora_scale=0.7) - ``` + See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details. """ super().fuse_lora( components=components, @@ -2163,35 +2079,7 @@ class FluxLoraLoaderMixin(LoraBaseMixin): **kwargs, ): r""" - Fuses the LoRA parameters into the original parameters of the corresponding blocks. - - - - This is an experimental API. - - - - Args: - components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. - lora_scale (`float`, defaults to 1.0): - Controls how much to influence the outputs with the LoRA parameters. - safe_fusing (`bool`, defaults to `False`): - Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. - adapter_names (`List[str]`, *optional*): - Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. - - Example: - - ```py - from diffusers import DiffusionPipeline - import torch - - pipeline = DiffusionPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 - ).to("cuda") - pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") - pipeline.fuse_lora(lora_scale=0.7) - ``` + See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details. """ transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer @@ -2888,35 +2776,7 @@ class CogVideoXLoraLoaderMixin(LoraBaseMixin): **kwargs, ): r""" - Fuses the LoRA parameters into the original parameters of the corresponding blocks. - - - - This is an experimental API. - - - - Args: - components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. - lora_scale (`float`, defaults to 1.0): - Controls how much to influence the outputs with the LoRA parameters. - safe_fusing (`bool`, defaults to `False`): - Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. - adapter_names (`List[str]`, *optional*): - Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. - - Example: - - ```py - from diffusers import DiffusionPipeline - import torch - - pipeline = DiffusionPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 - ).to("cuda") - pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") - pipeline.fuse_lora(lora_scale=0.7) - ``` + See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details. """ super().fuse_lora( components=components, @@ -3145,35 +3005,7 @@ class Mochi1LoraLoaderMixin(LoraBaseMixin): **kwargs, ): r""" - Fuses the LoRA parameters into the original parameters of the corresponding blocks. - - - - This is an experimental API. - - - - Args: - components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. - lora_scale (`float`, defaults to 1.0): - Controls how much to influence the outputs with the LoRA parameters. - safe_fusing (`bool`, defaults to `False`): - Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. - adapter_names (`List[str]`, *optional*): - Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. - - Example: - - ```py - from diffusers import DiffusionPipeline - import torch - - pipeline = DiffusionPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 - ).to("cuda") - pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") - pipeline.fuse_lora(lora_scale=0.7) - ``` + See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details. """ super().fuse_lora( components=components, @@ -3406,35 +3238,7 @@ class LTXVideoLoraLoaderMixin(LoraBaseMixin): **kwargs, ): r""" - Fuses the LoRA parameters into the original parameters of the corresponding blocks. - - - - This is an experimental API. - - - - Args: - components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. - lora_scale (`float`, defaults to 1.0): - Controls how much to influence the outputs with the LoRA parameters. - safe_fusing (`bool`, defaults to `False`): - Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. - adapter_names (`List[str]`, *optional*): - Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. - - Example: - - ```py - from diffusers import DiffusionPipeline - import torch - - pipeline = DiffusionPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 - ).to("cuda") - pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") - pipeline.fuse_lora(lora_scale=0.7) - ``` + See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details. """ super().fuse_lora( components=components, @@ -3664,35 +3468,7 @@ class SanaLoraLoaderMixin(LoraBaseMixin): **kwargs, ): r""" - Fuses the LoRA parameters into the original parameters of the corresponding blocks. - - - - This is an experimental API. - - - - Args: - components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. - lora_scale (`float`, defaults to 1.0): - Controls how much to influence the outputs with the LoRA parameters. - safe_fusing (`bool`, defaults to `False`): - Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. - adapter_names (`List[str]`, *optional*): - Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. - - Example: - - ```py - from diffusers import DiffusionPipeline - import torch - - pipeline = DiffusionPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 - ).to("cuda") - pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") - pipeline.fuse_lora(lora_scale=0.7) - ``` + See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details. """ super().fuse_lora( components=components, @@ -3925,35 +3701,7 @@ class HunyuanVideoLoraLoaderMixin(LoraBaseMixin): **kwargs, ): r""" - Fuses the LoRA parameters into the original parameters of the corresponding blocks. - - - - This is an experimental API. - - - - Args: - components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. - lora_scale (`float`, defaults to 1.0): - Controls how much to influence the outputs with the LoRA parameters. - safe_fusing (`bool`, defaults to `False`): - Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. - adapter_names (`List[str]`, *optional*): - Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. - - Example: - - ```py - from diffusers import DiffusionPipeline - import torch - - pipeline = DiffusionPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 - ).to("cuda") - pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") - pipeline.fuse_lora(lora_scale=0.7) - ``` + See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details. """ super().fuse_lora( components=components, @@ -4187,35 +3935,7 @@ class Lumina2LoraLoaderMixin(LoraBaseMixin): **kwargs, ): r""" - Fuses the LoRA parameters into the original parameters of the corresponding blocks. - - - - This is an experimental API. - - - - Args: - components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. - lora_scale (`float`, defaults to 1.0): - Controls how much to influence the outputs with the LoRA parameters. - safe_fusing (`bool`, defaults to `False`): - Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. - adapter_names (`List[str]`, *optional*): - Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. - - Example: - - ```py - from diffusers import DiffusionPipeline - import torch - - pipeline = DiffusionPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 - ).to("cuda") - pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") - pipeline.fuse_lora(lora_scale=0.7) - ``` + See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details. """ super().fuse_lora( components=components, @@ -4519,35 +4239,7 @@ class WanLoraLoaderMixin(LoraBaseMixin): **kwargs, ): r""" - Fuses the LoRA parameters into the original parameters of the corresponding blocks. - - - - This is an experimental API. - - - - Args: - components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. - lora_scale (`float`, defaults to 1.0): - Controls how much to influence the outputs with the LoRA parameters. - safe_fusing (`bool`, defaults to `False`): - Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. - adapter_names (`List[str]`, *optional*): - Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. - - Example: - - ```py - from diffusers import DiffusionPipeline - import torch - - pipeline = DiffusionPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 - ).to("cuda") - pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") - pipeline.fuse_lora(lora_scale=0.7) - ``` + See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details. """ super().fuse_lora( components=components, @@ -4854,35 +4546,7 @@ class SkyReelsV2LoraLoaderMixin(LoraBaseMixin): **kwargs, ): r""" - Fuses the LoRA parameters into the original parameters of the corresponding blocks. - - - - This is an experimental API. - - - - Args: - components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. - lora_scale (`float`, defaults to 1.0): - Controls how much to influence the outputs with the LoRA parameters. - safe_fusing (`bool`, defaults to `False`): - Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. - adapter_names (`List[str]`, *optional*): - Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. - - Example: - - ```py - from diffusers import DiffusionPipeline - import torch - - pipeline = DiffusionPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 - ).to("cuda") - pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") - pipeline.fuse_lora(lora_scale=0.7) - ``` + See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details. """ super().fuse_lora( components=components, @@ -5112,35 +4776,7 @@ class CogView4LoraLoaderMixin(LoraBaseMixin): **kwargs, ): r""" - Fuses the LoRA parameters into the original parameters of the corresponding blocks. - - - - This is an experimental API. - - - - Args: - components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. - lora_scale (`float`, defaults to 1.0): - Controls how much to influence the outputs with the LoRA parameters. - safe_fusing (`bool`, defaults to `False`): - Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. - adapter_names (`List[str]`, *optional*): - Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. - - Example: - - ```py - from diffusers import DiffusionPipeline - import torch - - pipeline = DiffusionPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 - ).to("cuda") - pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") - pipeline.fuse_lora(lora_scale=0.7) - ``` + See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details. """ super().fuse_lora( components=components, @@ -5373,35 +5009,7 @@ class HiDreamImageLoraLoaderMixin(LoraBaseMixin): **kwargs, ): r""" - Fuses the LoRA parameters into the original parameters of the corresponding blocks. - - - - This is an experimental API. - - - - Args: - components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. - lora_scale (`float`, defaults to 1.0): - Controls how much to influence the outputs with the LoRA parameters. - safe_fusing (`bool`, defaults to `False`): - Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. - adapter_names (`List[str]`, *optional*): - Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. - - Example: - - ```py - from diffusers import DiffusionPipeline - import torch - - pipeline = DiffusionPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 - ).to("cuda") - pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") - pipeline.fuse_lora(lora_scale=0.7) - ``` + See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details. """ super().fuse_lora( components=components, @@ -5636,35 +5244,7 @@ class QwenImageLoraLoaderMixin(LoraBaseMixin): **kwargs, ): r""" - Fuses the LoRA parameters into the original parameters of the corresponding blocks. - - - - This is an experimental API. - - - - Args: - components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. - lora_scale (`float`, defaults to 1.0): - Controls how much to influence the outputs with the LoRA parameters. - safe_fusing (`bool`, defaults to `False`): - Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. - adapter_names (`List[str]`, *optional*): - Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. - - Example: - - ```py - from diffusers import DiffusionPipeline - import torch - - pipeline = DiffusionPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 - ).to("cuda") - pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") - pipeline.fuse_lora(lora_scale=0.7) - ``` + See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details. """ super().fuse_lora( components=components,