diff --git a/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py b/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py index 8d50ee6c7e..103cca81c6 100644 --- a/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +++ b/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py @@ -53,7 +53,7 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin): prediction_type (`str`, defaults to `v_prediction`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen - Video](https://imagen.research.google/video/paper.pdf) paper). + Video](https://huggingface.co/papers/2210.02303) paper). solver_type (`str`, defaults to `midpoint`): Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers. diff --git a/src/diffusers/schedulers/scheduling_ddim_cogvideox.py b/src/diffusers/schedulers/scheduling_ddim_cogvideox.py index acb5a5f3e5..f2683d1304 100644 --- a/src/diffusers/schedulers/scheduling_ddim_cogvideox.py +++ b/src/diffusers/schedulers/scheduling_ddim_cogvideox.py @@ -157,7 +157,7 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin): prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen - Video](https://imagen.research.google/video/paper.pdf) paper). + Video](https://huggingface.co/papers/2210.02303) paper). thresholding (`bool`, defaults to `False`): Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such as Stable Diffusion. diff --git a/src/diffusers/schedulers/scheduling_ddim_inverse.py b/src/diffusers/schedulers/scheduling_ddim_inverse.py index a7717940e2..8ae13ad49d 100644 --- a/src/diffusers/schedulers/scheduling_ddim_inverse.py +++ b/src/diffusers/schedulers/scheduling_ddim_inverse.py @@ -160,7 +160,7 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin): prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen - Video](https://imagen.research.google/video/paper.pdf) paper). + Video](https://huggingface.co/papers/2210.02303) paper). timestep_spacing (`str`, defaults to `"leading"`): The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. diff --git a/src/diffusers/schedulers/scheduling_ddim_parallel.py b/src/diffusers/schedulers/scheduling_ddim_parallel.py index d957ade901..10873a082f 100644 --- a/src/diffusers/schedulers/scheduling_ddim_parallel.py +++ b/src/diffusers/schedulers/scheduling_ddim_parallel.py @@ -164,7 +164,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin): prediction_type (`str`, default `epsilon`, optional): prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 - https://imagen.research.google/video/paper.pdf) + https://huggingface.co/papers/2210.02303) thresholding (`bool`, default `False`): whether to use the "dynamic thresholding" method (introduced by Imagen, https://huggingface.co/papers/2205.11487). Note that the thresholding method is unsuitable for latent-space diff --git a/src/diffusers/schedulers/scheduling_ddpm.py b/src/diffusers/schedulers/scheduling_ddpm.py index 1d0ad49c58..ded88b8e1e 100644 --- a/src/diffusers/schedulers/scheduling_ddpm.py +++ b/src/diffusers/schedulers/scheduling_ddpm.py @@ -154,7 +154,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin): prediction_type (`"epsilon"`, `"sample"`, or `"v_prediction"`, defaults to `"epsilon"`): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen - Video](https://imagen.research.google/video/paper.pdf) paper). + Video](https://huggingface.co/papers/2210.02303) paper). thresholding (`bool`, defaults to `False`): Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such as Stable Diffusion. diff --git a/src/diffusers/schedulers/scheduling_ddpm_parallel.py b/src/diffusers/schedulers/scheduling_ddpm_parallel.py index 78011d0e46..941fc16be0 100644 --- a/src/diffusers/schedulers/scheduling_ddpm_parallel.py +++ b/src/diffusers/schedulers/scheduling_ddpm_parallel.py @@ -160,7 +160,7 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin): prediction_type (`str`, default `epsilon`, optional): prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 - https://imagen.research.google/video/paper.pdf) + https://huggingface.co/papers/2210.02303) thresholding (`bool`, default `False`): whether to use the "dynamic thresholding" method (introduced by Imagen, https://huggingface.co/papers/2205.11487). Note that the thresholding method is unsuitable for latent-space diff --git a/src/diffusers/schedulers/scheduling_deis_multistep.py b/src/diffusers/schedulers/scheduling_deis_multistep.py index 45d11c9426..09ce338a92 100644 --- a/src/diffusers/schedulers/scheduling_deis_multistep.py +++ b/src/diffusers/schedulers/scheduling_deis_multistep.py @@ -101,7 +101,7 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin): prediction_type (`str`, defaults to `epsilon`): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen - Video](https://imagen.research.google/video/paper.pdf) paper). + Video](https://huggingface.co/papers/2210.02303) paper). thresholding (`bool`, defaults to `False`): Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such as Stable Diffusion. diff --git a/src/diffusers/schedulers/scheduling_dpm_cogvideox.py b/src/diffusers/schedulers/scheduling_dpm_cogvideox.py index c5d79b5fe5..0a9082208c 100644 --- a/src/diffusers/schedulers/scheduling_dpm_cogvideox.py +++ b/src/diffusers/schedulers/scheduling_dpm_cogvideox.py @@ -158,7 +158,7 @@ class CogVideoXDPMScheduler(SchedulerMixin, ConfigMixin): prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen - Video](https://imagen.research.google/video/paper.pdf) paper). + Video](https://huggingface.co/papers/2210.02303) paper). thresholding (`bool`, defaults to `False`): Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such as Stable Diffusion. diff --git a/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py b/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py index 2c5d798be0..6696b0375f 100644 --- a/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +++ b/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py @@ -101,7 +101,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin): prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen - Video](https://imagen.research.google/video/paper.pdf) paper). + Video](https://huggingface.co/papers/2210.02303) paper). thresholding (`bool`, defaults to `False`): Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such as Stable Diffusion. diff --git a/src/diffusers/schedulers/scheduling_dpmsolver_sde.py b/src/diffusers/schedulers/scheduling_dpmsolver_sde.py index ef89feb1ca..81c9e4134f 100644 --- a/src/diffusers/schedulers/scheduling_dpmsolver_sde.py +++ b/src/diffusers/schedulers/scheduling_dpmsolver_sde.py @@ -182,7 +182,7 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin): prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen - Video](https://imagen.research.google/video/paper.pdf) paper). + Video](https://huggingface.co/papers/2210.02303) paper). use_karras_sigmas (`bool`, *optional*, defaults to `False`): Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`, the sigmas are determined according to a sequence of noise levels {σi}. diff --git a/src/diffusers/schedulers/scheduling_dpmsolver_singlestep.py b/src/diffusers/schedulers/scheduling_dpmsolver_singlestep.py index c51171cc98..55c9fb6e73 100644 --- a/src/diffusers/schedulers/scheduling_dpmsolver_singlestep.py +++ b/src/diffusers/schedulers/scheduling_dpmsolver_singlestep.py @@ -103,7 +103,7 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin): prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen - Video](https://imagen.research.google/video/paper.pdf) paper). + Video](https://huggingface.co/papers/2210.02303) paper). thresholding (`bool`, defaults to `False`): Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such as Stable Diffusion. diff --git a/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py b/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py index 5b1e84dc3a..d4e8ca5e8b 100644 --- a/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +++ b/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py @@ -57,7 +57,7 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin): prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen - Video](https://imagen.research.google/video/paper.pdf) paper). + Video](https://huggingface.co/papers/2210.02303) paper). thresholding (`bool`, defaults to `False`): Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such as Stable Diffusion. diff --git a/src/diffusers/schedulers/scheduling_edm_euler.py b/src/diffusers/schedulers/scheduling_edm_euler.py index 0bf17356a7..2ed05d3965 100644 --- a/src/diffusers/schedulers/scheduling_edm_euler.py +++ b/src/diffusers/schedulers/scheduling_edm_euler.py @@ -74,7 +74,7 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin): prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen - Video](https://imagen.research.google/video/paper.pdf) paper). + Video](https://huggingface.co/papers/2210.02303) paper). rho (`float`, *optional*, defaults to 7.0): The rho parameter used for calculating the Karras sigma schedule, which is set to 7.0 in the EDM paper [1]. final_sigmas_type (`str`, defaults to `"zero"`): diff --git a/src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py b/src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py index 8f39507301..8f042474af 100644 --- a/src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py +++ b/src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py @@ -152,7 +152,7 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen - Video](https://imagen.research.google/video/paper.pdf) paper). + Video](https://huggingface.co/papers/2210.02303) paper). timestep_spacing (`str`, defaults to `"linspace"`): The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. diff --git a/src/diffusers/schedulers/scheduling_euler_discrete.py b/src/diffusers/schedulers/scheduling_euler_discrete.py index 5ea926c4ca..a55a76626c 100644 --- a/src/diffusers/schedulers/scheduling_euler_discrete.py +++ b/src/diffusers/schedulers/scheduling_euler_discrete.py @@ -155,7 +155,7 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin): prediction_type (`Literal["epsilon", "sample", "v_prediction"]`, defaults to `"epsilon"`, *optional*): Prediction type of the scheduler function; can be `"epsilon"` (predicts the noise of the diffusion process), `"sample"` (directly predicts the noisy sample`) or `"v_prediction"` (see section 2.4 of [Imagen - Video](https://imagen.research.google/video/paper.pdf) paper). + Video](https://huggingface.co/papers/2210.02303) paper). interpolation_type (`Literal["linear", "log_linear"]`, defaults to `"linear"`, *optional*): The interpolation type to compute intermediate sigmas for the scheduler denoising steps. Should be one of `"linear"` or `"log_linear"`. diff --git a/src/diffusers/schedulers/scheduling_euler_discrete_flax.py b/src/diffusers/schedulers/scheduling_euler_discrete_flax.py index dae01302ac..09341c909d 100644 --- a/src/diffusers/schedulers/scheduling_euler_discrete_flax.py +++ b/src/diffusers/schedulers/scheduling_euler_discrete_flax.py @@ -74,7 +74,7 @@ class FlaxEulerDiscreteScheduler(FlaxSchedulerMixin, ConfigMixin): prediction_type (`str`, default `epsilon`, optional): prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 - https://imagen.research.google/video/paper.pdf) + https://huggingface.co/papers/2210.02303) dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`): the `dtype` used for params and computation. """ diff --git a/src/diffusers/schedulers/scheduling_heun_discrete.py b/src/diffusers/schedulers/scheduling_heun_discrete.py index 930b034464..b63da9576f 100644 --- a/src/diffusers/schedulers/scheduling_heun_discrete.py +++ b/src/diffusers/schedulers/scheduling_heun_discrete.py @@ -115,7 +115,7 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin): prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen - Video](https://imagen.research.google/video/paper.pdf) paper). + Video](https://huggingface.co/papers/2210.02303) paper). clip_sample (`bool`, defaults to `True`): Clip the predicted sample for numerical stability. clip_sample_range (`float`, defaults to 1.0): diff --git a/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py b/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py index 595b93c39d..da40bed635 100644 --- a/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +++ b/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py @@ -125,7 +125,7 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen - Video](https://imagen.research.google/video/paper.pdf) paper). + Video](https://huggingface.co/papers/2210.02303) paper). timestep_spacing (`str`, defaults to `"linspace"`): The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. diff --git a/src/diffusers/schedulers/scheduling_k_dpm_2_discrete.py b/src/diffusers/schedulers/scheduling_k_dpm_2_discrete.py index 7db1222722..6dc08d4d0a 100644 --- a/src/diffusers/schedulers/scheduling_k_dpm_2_discrete.py +++ b/src/diffusers/schedulers/scheduling_k_dpm_2_discrete.py @@ -124,7 +124,7 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin): prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen - Video](https://imagen.research.google/video/paper.pdf) paper). + Video](https://huggingface.co/papers/2210.02303) paper). timestep_spacing (`str`, defaults to `"linspace"`): The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. diff --git a/src/diffusers/schedulers/scheduling_lcm.py b/src/diffusers/schedulers/scheduling_lcm.py index a7b0644de4..0527f35338 100644 --- a/src/diffusers/schedulers/scheduling_lcm.py +++ b/src/diffusers/schedulers/scheduling_lcm.py @@ -170,7 +170,7 @@ class LCMScheduler(SchedulerMixin, ConfigMixin): prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen - Video](https://imagen.research.google/video/paper.pdf) paper). + Video](https://huggingface.co/papers/2210.02303) paper). thresholding (`bool`, defaults to `False`): Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such as Stable Diffusion. diff --git a/src/diffusers/schedulers/scheduling_lms_discrete.py b/src/diffusers/schedulers/scheduling_lms_discrete.py index d0766eed1b..276af6eeac 100644 --- a/src/diffusers/schedulers/scheduling_lms_discrete.py +++ b/src/diffusers/schedulers/scheduling_lms_discrete.py @@ -120,7 +120,7 @@ class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin): prediction_type (`"epsilon"`, `"sample"`, or `"v_prediction"`, defaults to `"epsilon"`): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen - Video](https://imagen.research.google/video/paper.pdf) paper). + Video](https://huggingface.co/papers/2210.02303) paper). timestep_spacing (`"linspace"`, `"leading"`, or `"trailing"`, defaults to `"linspace"`): The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. diff --git a/src/diffusers/schedulers/scheduling_lms_discrete_flax.py b/src/diffusers/schedulers/scheduling_lms_discrete_flax.py index b8e08ff9e1..3fd4dc8a5d 100644 --- a/src/diffusers/schedulers/scheduling_lms_discrete_flax.py +++ b/src/diffusers/schedulers/scheduling_lms_discrete_flax.py @@ -77,7 +77,7 @@ class FlaxLMSDiscreteScheduler(FlaxSchedulerMixin, ConfigMixin): prediction_type (`str`, default `epsilon`, optional): prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 - https://imagen.research.google/video/paper.pdf) + https://huggingface.co/papers/2210.02303) dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`): the `dtype` used for params and computation. """ diff --git a/src/diffusers/schedulers/scheduling_pndm_flax.py b/src/diffusers/schedulers/scheduling_pndm_flax.py index 12e22005af..44bafccd55 100644 --- a/src/diffusers/schedulers/scheduling_pndm_flax.py +++ b/src/diffusers/schedulers/scheduling_pndm_flax.py @@ -103,7 +103,7 @@ class FlaxPNDMScheduler(FlaxSchedulerMixin, ConfigMixin): prediction_type (`str`, default `epsilon`, optional): prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 - https://imagen.research.google/video/paper.pdf) + https://huggingface.co/papers/2210.02303) dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`): the `dtype` used for params and computation. """ diff --git a/src/diffusers/schedulers/scheduling_sasolver.py b/src/diffusers/schedulers/scheduling_sasolver.py index 9eb37c44ae..5783e20de6 100644 --- a/src/diffusers/schedulers/scheduling_sasolver.py +++ b/src/diffusers/schedulers/scheduling_sasolver.py @@ -105,7 +105,7 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin): prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen - Video](https://imagen.research.google/video/paper.pdf) paper). + Video](https://huggingface.co/papers/2210.02303) paper). tau_func (`Callable`, *optional*): Stochasticity during the sampling. Default in init is `lambda t: 1 if t >= 200 and t <= 800 else 0`. SA-Solver will sample from vanilla diffusion ODE if tau_func is set to `lambda t: 0`. SA-Solver will sample diff --git a/src/diffusers/schedulers/scheduling_tcd.py b/src/diffusers/schedulers/scheduling_tcd.py index 37b41c87f8..7b4840ffdb 100644 --- a/src/diffusers/schedulers/scheduling_tcd.py +++ b/src/diffusers/schedulers/scheduling_tcd.py @@ -171,7 +171,7 @@ class TCDScheduler(SchedulerMixin, ConfigMixin): prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen - Video](https://imagen.research.google/video/paper.pdf) paper). + Video](https://huggingface.co/papers/2210.02303) paper). thresholding (`bool`, defaults to `False`): Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such as Stable Diffusion. diff --git a/src/diffusers/schedulers/scheduling_unipc_multistep.py b/src/diffusers/schedulers/scheduling_unipc_multistep.py index 606dfeb239..6800c12201 100644 --- a/src/diffusers/schedulers/scheduling_unipc_multistep.py +++ b/src/diffusers/schedulers/scheduling_unipc_multistep.py @@ -139,7 +139,7 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin): prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen - Video](https://imagen.research.google/video/paper.pdf) paper). + Video](https://huggingface.co/papers/2210.02303) paper). thresholding (`bool`, defaults to `False`): Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such as Stable Diffusion.