1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

#7535 Update FloatTensor type hints to Tensor (#7883)

* find & replace all FloatTensors to Tensor

* apply formatting

* Update torch.FloatTensor to torch.Tensor in the remaining files

* formatting

* Fix the rest of the places where FloatTensor is used as well as in documentation

* formatting

* Update new file from FloatTensor to Tensor
This commit is contained in:
Mark Van Aken
2024-05-10 12:53:31 -07:00
committed by GitHub
parent 04f4bd54ea
commit be4afa0bb4
275 changed files with 3765 additions and 3824 deletions

View File

@@ -242,10 +242,10 @@ Here's an example of a tuple return, comprising several objects:
```
Returns:
`tuple(torch.FloatTensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs:
- ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.FloatTensor` of shape `(1,)` --
`tuple(torch.Tensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs:
- ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.Tensor` of shape `(1,)` --
Total loss is the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
- **prediction_scores** (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`) --
- **prediction_scores** (`torch.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`) --
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
```

View File

@@ -261,7 +261,7 @@ from dataclasses import dataclass
@dataclass
class UNet2DConditionOutput:
sample: torch.FloatTensor
sample: torch.Tensor
pipe = StableDiffusionPipeline.from_pretrained(

View File

@@ -339,7 +339,7 @@ from dataclasses import dataclass
@dataclass
class UNet2DConditionOutput:
sample: torch.FloatTensor
sample: torch.Tensor
pipe = StableDiffusionPipeline.from_pretrained(