diff --git a/models/vision/ddim/README.md b/models/vision/ddim/README.md new file mode 100644 index 0000000000..1070c04230 --- /dev/null +++ b/models/vision/ddim/README.md @@ -0,0 +1,28 @@ + + +# Denoising Diffusion Implicit Models (DDIM) + +## Overview + +DDPM was proposed in [Denoising Diffusion Implicit Models](https://arxiv.org/abs/2010.02502) by *Jiaming Song, Chenlin Meng, Stefano Ermon* + +The abstract from the paper is the following: + +*Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training, yet they require simulating a Markov chain for many steps to produce a sample. To accelerate sampling, we present denoising diffusion implicit models (DDIMs), a more efficient class of iterative implicit probabilistic models with the same training procedure as DDPMs. In DDPMs, the generative process is defined as the reverse of a Markovian diffusion process. We construct a class of non-Markovian diffusion processes that lead to the same training objective, but whose reverse process can be much faster to sample from. We empirically demonstrate that DDIMs can produce high quality samples 10× to 50× faster in terms of wall-clock time compared to DDPMs, allow us to trade off computation for sample quality, and can perform semantically meaningful image interpolation directly in the latent space.* + +Tips: + +- ... +- ... + +This model was contributed by [???](https://huggingface.co/???). The original code can be found [here](https://github.com/hojonathanho/diffusion). diff --git a/models/vision/ddim/modeling_ddim.py b/models/vision/ddim/modeling_ddim.py new file mode 100644 index 0000000000..fa486c3293 --- /dev/null +++ b/models/vision/ddim/modeling_ddim.py @@ -0,0 +1,71 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and + +# limitations under the License. + + +from diffusers import DiffusionPipeline +import tqdm +import torch + + +def compute_alpha(beta, t): + beta = torch.cat([torch.zeros(1).to(beta.device), beta], dim=0) + a = (1 - beta).cumprod(dim=0).index_select(0, t + 1).view(-1, 1, 1, 1) + return a + + +class DDIM(DiffusionPipeline): + + def __init__(self, unet, noise_scheduler): + super().__init__() + self.register_modules(unet=unet, noise_scheduler=noise_scheduler) + + def __call__(self, batch_size=1, generator=None, torch_device=None, eta=0.0, inference_time_steps=50): + # eta is η in paper + + if torch_device is None: + torch_device = "cuda" if torch.cuda.is_available() else "cpu" + + num_timesteps = self.noise_scheduler.num_timesteps + + seq = range(0, num_timesteps, num_timesteps // inference_time_steps) + b = self.noise_scheduler.betas.to(torch_device) + + self.unet.to(torch_device) + x = self.noise_scheduler.sample_noise((batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution), device=torch_device, generator=generator) + + with torch.no_grad(): + n = batch_size + seq_next = [-1] + list(seq[:-1]) + x0_preds = [] + xs = [x] + for i, j in zip(reversed(seq), reversed(seq_next)): + print(i) + t = (torch.ones(n) * i).to(x.device) + next_t = (torch.ones(n) * j).to(x.device) + at = compute_alpha(b, t.long()) + at_next = compute_alpha(b, next_t.long()) + xt = xs[-1].to('cuda') + et = self.unet(xt, t) + x0_t = (xt - et * (1 - at).sqrt()) / at.sqrt() + x0_preds.append(x0_t.to('cpu')) + # eta + c1 = ( + eta * ((1 - at / at_next) * (1 - at_next) / (1 - at)).sqrt() + ) + c2 = ((1 - at_next) - c1 ** 2).sqrt() + xt_next = at_next.sqrt() * x0_t + c1 * torch.randn_like(x) + c2 * et + xs.append(xt_next.to('cpu')) + + return xt_next diff --git a/models/vision/ddim/run_ddpm.py b/models/vision/ddim/run_ddpm.py new file mode 100755 index 0000000000..88de931381 --- /dev/null +++ b/models/vision/ddim/run_ddpm.py @@ -0,0 +1,17 @@ +#!/usr/bin/env python3 +import torch + +from diffusers import GaussianDDPMScheduler, UNetModel + + +model = UNetModel(dim=64, dim_mults=(1, 2, 4, 8)) + +diffusion = GaussianDDPMScheduler(model, image_size=128, timesteps=1000, loss_type="l1") # number of steps # L1 or L2 + +training_images = torch.randn(8, 3, 128, 128) # your images need to be normalized from a range of -1 to +1 +loss = diffusion(training_images) +loss.backward() +# after a lot of training + +sampled_images = diffusion.sample(batch_size=4) +sampled_images.shape # (4, 3, 128, 128) diff --git a/models/vision/ddim/run_inference.py b/models/vision/ddim/run_inference.py new file mode 100755 index 0000000000..59ed5865b2 --- /dev/null +++ b/models/vision/ddim/run_inference.py @@ -0,0 +1,23 @@ +#!/usr/bin/env python3 +# !pip install diffusers +from modeling_ddim import DDIM +import PIL.Image +import numpy as np + +model_id = "fusing/ddpm-cifar10" +model_id = "fusing/ddpm-lsun-bedroom" + +# load model and scheduler +ddpm = DDIM.from_pretrained(model_id) + +# run pipeline in inference (sample random noise and denoise) +image = ddpm() + +# process image to PIL +image_processed = image.cpu().permute(0, 2, 3, 1) +image_processed = (image_processed + 1.0) * 127.5 +image_processed = image_processed.numpy().astype(np.uint8) +image_pil = PIL.Image.fromarray(image_processed[0]) + +# save image +image_pil.save("/home/patrick/images/show.png") diff --git a/models/vision/ddpm/modeling_ddpm.py b/models/vision/ddpm/modeling_ddpm.py index e85d3cfe50..f84ab452a5 100644 --- a/models/vision/ddpm/modeling_ddpm.py +++ b/models/vision/ddpm/modeling_ddpm.py @@ -21,8 +21,6 @@ import torch class DDPM(DiffusionPipeline): - modeling_file = "modeling_ddpm.py" - def __init__(self, unet, noise_scheduler): super().__init__() self.register_modules(unet=unet, noise_scheduler=noise_scheduler) diff --git a/setup.py b/setup.py index d902811bbb..17a5dc367e 100644 --- a/setup.py +++ b/setup.py @@ -28,11 +28,11 @@ To create the package for pypi. 3. Unpin specific versions from setup.py that use a git install. 4. Checkout the release branch (v-release, for example v4.19-release), and commit these changes with the - message: "Release: " and push. + message: "Release: " and push. 5. Wait for the tests on main to be completed and be green (otherwise revert and fix bugs) -6. Add a tag in git to mark the release: "git tag v -m 'Adds tag v for pypi' " +6. Add a tag in git to mark the release: "git tag v -m 'Adds tag v for pypi' " Push the tag to git: git push --tags origin v-release 7. Build both the sources and the wheel. Do not change anything in setup.py between @@ -189,7 +189,7 @@ extras["sagemaker"] = [ setup( name="diffusers", - version="0.0.1", + version="0.0.2", description="Diffusers", long_description=open("README.md", "r", encoding="utf-8").read(), long_description_content_type="text/markdown", @@ -222,8 +222,8 @@ setup( # Release checklist # 1. Change the version in __init__.py and setup.py. -# 2. Commit these changes with the message: "Release: VERSION" -# 3. Add a tag in git to mark the release: "git tag VERSION -m 'Adds tag VERSION for pypi' " +# 2. Commit these changes with the message: "Release: Release" +# 3. Add a tag in git to mark the release: "git tag RELEASE -m 'Adds tag RELEASE for pypi' " # Push the tag to git: git push --tags origin main # 4. Run the following commands in the top-level directory: # python setup.py bdist_wheel diff --git a/src/diffusers/__init__.py b/src/diffusers/__init__.py index 1419140297..4269ac0a0b 100644 --- a/src/diffusers/__init__.py +++ b/src/diffusers/__init__.py @@ -7,6 +7,7 @@ __version__ = "0.0.1" from .modeling_utils import ModelMixin from .models.unet import UNetModel from .models.unet_glide import UNetGLIDEModel +from .models.unet_ldm import UNetLDMModel from .models.clip_text_transformer import CLIPTextModel from .pipeline_utils import DiffusionPipeline from .schedulers.gaussian_ddpm import GaussianDDPMScheduler diff --git a/src/diffusers/models/__init__.py b/src/diffusers/models/__init__.py index 964c0200d6..f383102de5 100644 --- a/src/diffusers/models/__init__.py +++ b/src/diffusers/models/__init__.py @@ -18,4 +18,5 @@ from .unet import UNetModel from .unet_glide import UNetGLIDEModel +from .unet_ldm import UNetLDMModel from .clip_text_transformer import CLIPTextModel diff --git a/src/diffusers/models/unet_ldm.py b/src/diffusers/models/unet_ldm.py new file mode 100644 index 0000000000..57dec0b606 --- /dev/null +++ b/src/diffusers/models/unet_ldm.py @@ -0,0 +1,1294 @@ +from inspect import isfunction +from abc import abstractmethod +import math + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from einops import repeat, rearrange + +from ..configuration_utils import ConfigMixin +from ..modeling_utils import ModelMixin + +def exists(val): + return val is not None + + +def uniq(arr): + return{el: True for el in arr}.keys() + + +def default(val, d): + if exists(val): + return val + return d() if isfunction(d) else d + + +def max_neg_value(t): + return -torch.finfo(t.dtype).max + + +def init_(tensor): + dim = tensor.shape[-1] + std = 1 / math.sqrt(dim) + tensor.uniform_(-std, std) + return tensor + + +# feedforward +class GEGLU(nn.Module): + def __init__(self, dim_in, dim_out): + super().__init__() + self.proj = nn.Linear(dim_in, dim_out * 2) + + def forward(self, x): + x, gate = self.proj(x).chunk(2, dim=-1) + return x * F.gelu(gate) + + +class FeedForward(nn.Module): + def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): + super().__init__() + inner_dim = int(dim * mult) + dim_out = default(dim_out, dim) + project_in = nn.Sequential( + nn.Linear(dim, inner_dim), + nn.GELU() + ) if not glu else GEGLU(dim, inner_dim) + + self.net = nn.Sequential( + project_in, + nn.Dropout(dropout), + nn.Linear(inner_dim, dim_out) + ) + + def forward(self, x): + return self.net(x) + + +def zero_module(module): + """ + Zero out the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().zero_() + return module + + +def Normalize(in_channels): + return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) + + +class LinearAttention(nn.Module): + def __init__(self, dim, heads=4, dim_head=32): + super().__init__() + self.heads = heads + hidden_dim = dim_head * heads + self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) + self.to_out = nn.Conv2d(hidden_dim, dim, 1) + + def forward(self, x): + b, c, h, w = x.shape + qkv = self.to_qkv(x) + q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3) + k = k.softmax(dim=-1) + context = torch.einsum('bhdn,bhen->bhde', k, v) + out = torch.einsum('bhde,bhdn->bhen', context, q) + out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w) + return self.to_out(out) + + +class SpatialSelfAttention(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.in_channels = in_channels + + self.norm = Normalize(in_channels) + self.q = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + self.k = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + self.v = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + self.proj_out = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + + def forward(self, x): + h_ = x + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + # compute attention + b,c,h,w = q.shape + q = rearrange(q, 'b c h w -> b (h w) c') + k = rearrange(k, 'b c h w -> b c (h w)') + w_ = torch.einsum('bij,bjk->bik', q, k) + + w_ = w_ * (int(c)**(-0.5)) + w_ = torch.nn.functional.softmax(w_, dim=2) + + # attend to values + v = rearrange(v, 'b c h w -> b c (h w)') + w_ = rearrange(w_, 'b i j -> b j i') + h_ = torch.einsum('bij,bjk->bik', v, w_) + h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h) + h_ = self.proj_out(h_) + + return x+h_ + + +class CrossAttention(nn.Module): + def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): + super().__init__() + inner_dim = dim_head * heads + context_dim = default(context_dim, query_dim) + + self.scale = dim_head ** -0.5 + self.heads = heads + + self.to_q = nn.Linear(query_dim, inner_dim, bias=False) + self.to_k = nn.Linear(context_dim, inner_dim, bias=False) + self.to_v = nn.Linear(context_dim, inner_dim, bias=False) + + self.to_out = nn.Sequential( + nn.Linear(inner_dim, query_dim), + nn.Dropout(dropout) + ) + + def forward(self, x, context=None, mask=None): + h = self.heads + + q = self.to_q(x) + context = default(context, x) + k = self.to_k(context) + v = self.to_v(context) + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) + + sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale + + if exists(mask): + mask = rearrange(mask, 'b ... -> b (...)') + max_neg_value = -torch.finfo(sim.dtype).max + mask = repeat(mask, 'b j -> (b h) () j', h=h) + sim.masked_fill_(~mask, max_neg_value) + + # attention, what we cannot get enough of + attn = sim.softmax(dim=-1) + + out = torch.einsum('b i j, b j d -> b i d', attn, v) + out = rearrange(out, '(b h) n d -> b n (h d)', h=h) + return self.to_out(out) + + +class BasicTransformerBlock(nn.Module): + def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True): + super().__init__() + self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention + self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) + self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, + heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none + self.norm1 = nn.LayerNorm(dim) + self.norm2 = nn.LayerNorm(dim) + self.norm3 = nn.LayerNorm(dim) + self.checkpoint = checkpoint + + def forward(self, x, context=None): + x = self.attn1(self.norm1(x)) + x + x = self.attn2(self.norm2(x), context=context) + x + x = self.ff(self.norm3(x)) + x + return x + + +class SpatialTransformer(nn.Module): + """ + Transformer block for image-like data. + First, project the input (aka embedding) + and reshape to b, t, d. + Then apply standard transformer action. + Finally, reshape to image + """ + def __init__(self, in_channels, n_heads, d_head, + depth=1, dropout=0., context_dim=None): + super().__init__() + self.in_channels = in_channels + inner_dim = n_heads * d_head + self.norm = Normalize(in_channels) + + self.proj_in = nn.Conv2d(in_channels, + inner_dim, + kernel_size=1, + stride=1, + padding=0) + + self.transformer_blocks = nn.ModuleList( + [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim) + for d in range(depth)] + ) + + self.proj_out = zero_module(nn.Conv2d(inner_dim, + in_channels, + kernel_size=1, + stride=1, + padding=0)) + + def forward(self, x, context=None): + # note: if no context is given, cross-attention defaults to self-attention + b, c, h, w = x.shape + x_in = x + x = self.norm(x) + x = self.proj_in(x) + x = rearrange(x, 'b c h w -> b (h w) c') + for block in self.transformer_blocks: + x = block(x, context=context) + x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w) + x = self.proj_out(x) + return x + x_in + +def convert_module_to_f16(l): + """ + Convert primitive modules to float16. + """ + if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): + l.weight.data = l.weight.data.half() + if l.bias is not None: + l.bias.data = l.bias.data.half() + + +def convert_module_to_f32(l): + """ + Convert primitive modules to float32, undoing convert_module_to_f16(). + """ + if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): + l.weight.data = l.weight.data.float() + if l.bias is not None: + l.bias.data = l.bias.data.float() + + +def avg_pool_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D average pooling module. + """ + if dims == 1: + return nn.AvgPool1d(*args, **kwargs) + elif dims == 2: + return nn.AvgPool2d(*args, **kwargs) + elif dims == 3: + return nn.AvgPool3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +def conv_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D convolution module. + """ + if dims == 1: + return nn.Conv1d(*args, **kwargs) + elif dims == 2: + return nn.Conv2d(*args, **kwargs) + elif dims == 3: + return nn.Conv3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +def linear(*args, **kwargs): + """ + Create a linear module. + """ + return nn.Linear(*args, **kwargs) + + +class GroupNorm32(nn.GroupNorm): + def __init__(self, num_groups, num_channels, swish, eps=1e-5): + super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps) + self.swish = swish + + def forward(self, x): + y = super().forward(x.float()).to(x.dtype) + if self.swish == 1.0: + y = F.silu(y) + elif self.swish: + y = y * F.sigmoid(y * float(self.swish)) + return y + + +def normalization(channels, swish=0.0): + """ + Make a standard normalization layer, with an optional swish activation. + + :param channels: number of input channels. + :return: an nn.Module for normalization. + """ + return GroupNorm32(num_channels=channels, num_groups=32, swish=swish) + + +def timestep_embedding(timesteps, dim, max_period=10000): + """ + Create sinusoidal timestep embeddings. + + :param timesteps: a 1-D Tensor of N indices, one per batch element. + These may be fractional. + :param dim: the dimension of the output. + :param max_period: controls the minimum frequency of the embeddings. + :return: an [N x dim] Tensor of positional embeddings. + """ + half = dim // 2 + freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to( + device=timesteps.device + ) + args = timesteps[:, None].float() * freqs[None] + embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) + if dim % 2: + embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) + return embedding + + +def zero_module(module): + """ + Zero out the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().zero_() + return module + + +## go +class AttentionPool2d(nn.Module): + """ + Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py + """ + + def __init__( + self, + spacial_dim: int, + embed_dim: int, + num_heads_channels: int, + output_dim: int = None, + ): + super().__init__() + self.positional_embedding = nn.Parameter(torch.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5) + self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1) + self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1) + self.num_heads = embed_dim // num_heads_channels + self.attention = QKVAttention(self.num_heads) + + def forward(self, x): + b, c, *_spatial = x.shape + x = x.reshape(b, c, -1) # NC(HW) + x = torch.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1) + x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1) + x = self.qkv_proj(x) + x = self.attention(x) + x = self.c_proj(x) + return x[:, :, 0] + + +class TimestepBlock(nn.Module): + """ + Any module where forward() takes timestep embeddings as a second argument. + """ + + @abstractmethod + def forward(self, x, emb): + """ + Apply the module to `x` given `emb` timestep embeddings. + """ + + +class TimestepEmbedSequential(nn.Sequential, TimestepBlock): + """ + A sequential module that passes timestep embeddings to the children that + support it as an extra input. + """ + + def forward(self, x, emb, context=None): + for layer in self: + if isinstance(layer, TimestepBlock): + x = layer(x, emb) + elif isinstance(layer, SpatialTransformer): + x = layer(x, context) + else: + x = layer(x) + return x + + +class Upsample(nn.Module): + """ + An upsampling layer with an optional convolution. + :param channels: channels in the inputs and outputs. + :param use_conv: a bool determining if a convolution is applied. + :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + upsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.dims = dims + if use_conv: + self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding) + + def forward(self, x): + assert x.shape[1] == self.channels + if self.dims == 3: + x = F.interpolate( + x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" + ) + else: + x = F.interpolate(x, scale_factor=2, mode="nearest") + if self.use_conv: + x = self.conv(x) + return x + + +class Downsample(nn.Module): + """ + A downsampling layer with an optional convolution. + :param channels: channels in the inputs and outputs. + :param use_conv: a bool determining if a convolution is applied. + :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + downsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.dims = dims + stride = 2 if dims != 3 else (1, 2, 2) + if use_conv: + self.op = conv_nd( + dims, self.channels, self.out_channels, 3, stride=stride, padding=padding + ) + else: + assert self.channels == self.out_channels + self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) + + def forward(self, x): + assert x.shape[1] == self.channels + return self.op(x) + + +class ResBlock(TimestepBlock): + """ + A residual block that can optionally change the number of channels. + :param channels: the number of input channels. + :param emb_channels: the number of timestep embedding channels. + :param dropout: the rate of dropout. + :param out_channels: if specified, the number of out channels. + :param use_conv: if True and out_channels is specified, use a spatial + convolution instead of a smaller 1x1 convolution to change the + channels in the skip connection. + :param dims: determines if the signal is 1D, 2D, or 3D. + :param use_checkpoint: if True, use gradient checkpointing on this module. + :param up: if True, use this block for upsampling. + :param down: if True, use this block for downsampling. + """ + + def __init__( + self, + channels, + emb_channels, + dropout, + out_channels=None, + use_conv=False, + use_scale_shift_norm=False, + dims=2, + use_checkpoint=False, + up=False, + down=False, + ): + super().__init__() + self.channels = channels + self.emb_channels = emb_channels + self.dropout = dropout + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.use_checkpoint = use_checkpoint + self.use_scale_shift_norm = use_scale_shift_norm + + self.in_layers = nn.Sequential( + normalization(channels), + nn.SiLU(), + conv_nd(dims, channels, self.out_channels, 3, padding=1), + ) + + self.updown = up or down + + if up: + self.h_upd = Upsample(channels, False, dims) + self.x_upd = Upsample(channels, False, dims) + elif down: + self.h_upd = Downsample(channels, False, dims) + self.x_upd = Downsample(channels, False, dims) + else: + self.h_upd = self.x_upd = nn.Identity() + + self.emb_layers = nn.Sequential( + nn.SiLU(), + linear( + emb_channels, + 2 * self.out_channels if use_scale_shift_norm else self.out_channels, + ), + ) + self.out_layers = nn.Sequential( + normalization(self.out_channels), + nn.SiLU(), + nn.Dropout(p=dropout), + zero_module( + conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) + ), + ) + + if self.out_channels == channels: + self.skip_connection = nn.Identity() + elif use_conv: + self.skip_connection = conv_nd( + dims, channels, self.out_channels, 3, padding=1 + ) + else: + self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) + + def forward(self, x, emb): + if self.updown: + in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] + h = in_rest(x) + h = self.h_upd(h) + x = self.x_upd(x) + h = in_conv(h) + else: + h = self.in_layers(x) + emb_out = self.emb_layers(emb).type(h.dtype) + while len(emb_out.shape) < len(h.shape): + emb_out = emb_out[..., None] + if self.use_scale_shift_norm: + out_norm, out_rest = self.out_layers[0], self.out_layers[1:] + scale, shift = torch.chunk(emb_out, 2, dim=1) + h = out_norm(h) * (1 + scale) + shift + h = out_rest(h) + else: + h = h + emb_out + h = self.out_layers(h) + return self.skip_connection(x) + h + + +class AttentionBlock(nn.Module): + """ + An attention block that allows spatial positions to attend to each other. + Originally ported from here, but adapted to the N-d case. + https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. + """ + + def __init__( + self, + channels, + num_heads=1, + num_head_channels=-1, + use_checkpoint=False, + use_new_attention_order=False, + ): + super().__init__() + self.channels = channels + if num_head_channels == -1: + self.num_heads = num_heads + else: + assert ( + channels % num_head_channels == 0 + ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" + self.num_heads = channels // num_head_channels + self.use_checkpoint = use_checkpoint + self.norm = normalization(channels) + self.qkv = conv_nd(1, channels, channels * 3, 1) + # split heads before split qkv + self.attention = QKVAttentionLegacy(self.num_heads) + + self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) + + def forward(self, x): + b, c, *spatial = x.shape + x = x.reshape(b, c, -1) + qkv = self.qkv(self.norm(x)) + h = self.attention(qkv) + h = self.proj_out(h) + return (x + h).reshape(b, c, *spatial) + + +class QKVAttention(nn.Module): + """ + A module which performs QKV attention and splits in a different order. + """ + + def __init__(self, n_heads): + super().__init__() + self.n_heads = n_heads + + def forward(self, qkv): + """ + Apply QKV attention. + :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. + :return: an [N x (H * C) x T] tensor after attention. + """ + bs, width, length = qkv.shape + assert width % (3 * self.n_heads) == 0 + ch = width // (3 * self.n_heads) + q, k, v = qkv.chunk(3, dim=1) + scale = 1 / math.sqrt(math.sqrt(ch)) + weight = torch.einsum( + "bct,bcs->bts", + (q * scale).view(bs * self.n_heads, ch, length), + (k * scale).view(bs * self.n_heads, ch, length), + ) # More stable with f16 than dividing afterwards + weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) + a = torch.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)) + return a.reshape(bs, -1, length) + + @staticmethod + def count_flops(model, _x, y): + return count_flops_attn(model, _x, y) + + +def count_flops_attn(model, _x, y): + """ + A counter for the `thop` package to count the operations in an + attention operation. + Meant to be used like: + macs, params = thop.profile( + model, + inputs=(inputs, timestamps), + custom_ops={QKVAttention: QKVAttention.count_flops}, + ) + """ + b, c, *spatial = y[0].shape + num_spatial = int(np.prod(spatial)) + # We perform two matmuls with the same number of ops. + # The first computes the weight matrix, the second computes + # the combination of the value vectors. + matmul_ops = 2 * b * (num_spatial ** 2) * c + model.total_ops += torch.DoubleTensor([matmul_ops]) + + +class QKVAttentionLegacy(nn.Module): + """ + A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping + """ + + def __init__(self, n_heads): + super().__init__() + self.n_heads = n_heads + + def forward(self, qkv): + """ + Apply QKV attention. + :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. + :return: an [N x (H * C) x T] tensor after attention. + """ + bs, width, length = qkv.shape + assert width % (3 * self.n_heads) == 0 + ch = width // (3 * self.n_heads) + q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) + scale = 1 / math.sqrt(math.sqrt(ch)) + weight = torch.einsum( + "bct,bcs->bts", q * scale, k * scale + ) # More stable with f16 than dividing afterwards + weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) + a = torch.einsum("bts,bcs->bct", weight, v) + return a.reshape(bs, -1, length) + + @staticmethod + def count_flops(model, _x, y): + return count_flops_attn(model, _x, y) + + +class UNetLDMModel(ModelMixin, ConfigMixin): + """ + The full UNet model with attention and timestep embedding. + :param in_channels: channels in the input Tensor. + :param model_channels: base channel count for the model. + :param out_channels: channels in the output Tensor. + :param num_res_blocks: number of residual blocks per downsample. + :param attention_resolutions: a collection of downsample rates at which + attention will take place. May be a set, list, or tuple. + For example, if this contains 4, then at 4x downsampling, attention + will be used. + :param dropout: the dropout probability. + :param channel_mult: channel multiplier for each level of the UNet. + :param conv_resample: if True, use learned convolutions for upsampling and + downsampling. + :param dims: determines if the signal is 1D, 2D, or 3D. + :param num_classes: if specified (as an int), then this model will be + class-conditional with `num_classes` classes. + :param use_checkpoint: use gradient checkpointing to reduce memory usage. + :param num_heads: the number of attention heads in each attention layer. + :param num_heads_channels: if specified, ignore num_heads and instead use + a fixed channel width per attention head. + :param num_heads_upsample: works with num_heads to set a different number + of heads for upsampling. Deprecated. + :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. + :param resblock_updown: use residual blocks for up/downsampling. + :param use_new_attention_order: use a different attention pattern for potentially + increased efficiency. + """ + + def __init__( + self, + image_size, + in_channels, + model_channels, + out_channels, + num_res_blocks, + attention_resolutions, + dropout=0, + channel_mult=(1, 2, 4, 8), + conv_resample=True, + dims=2, + num_classes=None, + use_checkpoint=False, + use_fp16=False, + num_heads=-1, + num_head_channels=-1, + num_heads_upsample=-1, + use_scale_shift_norm=False, + resblock_updown=False, + use_new_attention_order=False, + use_spatial_transformer=False, # custom transformer support + transformer_depth=1, # custom transformer support + context_dim=None, # custom transformer support + n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model + legacy=True, + ): + super().__init__() + + # register all __init__ params with self.register + self.register( + image_size=image_size, + in_channels=in_channels, + model_channels=model_channels, + out_channels=out_channels, + num_res_blocks=num_res_blocks, + attention_resolutions=attention_resolutions, + dropout=dropout, + channel_mult=channel_mult, + conv_resample=conv_resample, + dims=dims, + num_classes=num_classes, + use_checkpoint=use_checkpoint, + use_fp16=use_fp16, + num_heads=num_heads, + num_head_channels=num_head_channels, + num_heads_upsample=num_heads_upsample, + use_scale_shift_norm=use_scale_shift_norm, + resblock_updown=resblock_updown, + use_new_attention_order=use_new_attention_order, + use_spatial_transformer=use_spatial_transformer, + transformer_depth=transformer_depth, + context_dim=context_dim, + n_embed=n_embed, + legacy=legacy, + ) + + if use_spatial_transformer: + assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' + + if context_dim is not None: + assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' + + if num_heads_upsample == -1: + num_heads_upsample = num_heads + + if num_heads == -1: + assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' + + if num_head_channels == -1: + assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' + + self.image_size = image_size + self.in_channels = in_channels + self.model_channels = model_channels + self.out_channels = out_channels + self.num_res_blocks = num_res_blocks + self.attention_resolutions = attention_resolutions + self.dropout = dropout + self.channel_mult = channel_mult + self.conv_resample = conv_resample + self.num_classes = num_classes + self.use_checkpoint = use_checkpoint + self.dtype_ = torch.float16 if use_fp16 else torch.float32 + self.num_heads = num_heads + self.num_head_channels = num_head_channels + self.num_heads_upsample = num_heads_upsample + self.predict_codebook_ids = n_embed is not None + + time_embed_dim = model_channels * 4 + self.time_embed = nn.Sequential( + linear(model_channels, time_embed_dim), + nn.SiLU(), + linear(time_embed_dim, time_embed_dim), + ) + + if self.num_classes is not None: + self.label_emb = nn.Embedding(num_classes, time_embed_dim) + + self.input_blocks = nn.ModuleList( + [ + TimestepEmbedSequential( + conv_nd(dims, in_channels, model_channels, 3, padding=1) + ) + ] + ) + self._feature_size = model_channels + input_block_chans = [model_channels] + ch = model_channels + ds = 1 + for level, mult in enumerate(channel_mult): + for _ in range(num_res_blocks): + layers = [ + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=mult * model_channels, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ) + ] + ch = mult * model_channels + if ds in attention_resolutions: + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + #num_heads = 1 + dim_head = ch // num_heads if use_spatial_transformer else num_head_channels + layers.append( + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads, + num_head_channels=dim_head, + use_new_attention_order=use_new_attention_order, + ) if not use_spatial_transformer else SpatialTransformer( + ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim + ) + ) + self.input_blocks.append(TimestepEmbedSequential(*layers)) + self._feature_size += ch + input_block_chans.append(ch) + if level != len(channel_mult) - 1: + out_ch = ch + self.input_blocks.append( + TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=out_ch, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + down=True, + ) + if resblock_updown + else Downsample( + ch, conv_resample, dims=dims, out_channels=out_ch + ) + ) + ) + ch = out_ch + input_block_chans.append(ch) + ds *= 2 + self._feature_size += ch + + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + #num_heads = 1 + dim_head = ch // num_heads if use_spatial_transformer else num_head_channels + self.middle_block = TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ), + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads, + num_head_channels=dim_head, + use_new_attention_order=use_new_attention_order, + ) if not use_spatial_transformer else SpatialTransformer( + ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim + ), + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ), + ) + self._feature_size += ch + + self.output_blocks = nn.ModuleList([]) + for level, mult in list(enumerate(channel_mult))[::-1]: + for i in range(num_res_blocks + 1): + ich = input_block_chans.pop() + layers = [ + ResBlock( + ch + ich, + time_embed_dim, + dropout, + out_channels=model_channels * mult, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ) + ] + ch = model_channels * mult + if ds in attention_resolutions: + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + #num_heads = 1 + dim_head = ch // num_heads if use_spatial_transformer else num_head_channels + layers.append( + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads_upsample, + num_head_channels=dim_head, + use_new_attention_order=use_new_attention_order, + ) if not use_spatial_transformer else SpatialTransformer( + ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim + ) + ) + if level and i == num_res_blocks: + out_ch = ch + layers.append( + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=out_ch, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + up=True, + ) + if resblock_updown + else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) + ) + ds //= 2 + self.output_blocks.append(TimestepEmbedSequential(*layers)) + self._feature_size += ch + + self.out = nn.Sequential( + normalization(ch), + nn.SiLU(), + zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), + ) + if self.predict_codebook_ids: + self.id_predictor = nn.Sequential( + normalization(ch), + conv_nd(dims, model_channels, n_embed, 1), + #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits + ) + + def convert_to_fp16(self): + """ + Convert the torso of the model to float16. + """ + self.input_blocks.apply(convert_module_to_f16) + self.middle_block.apply(convert_module_to_f16) + self.output_blocks.apply(convert_module_to_f16) + + def convert_to_fp32(self): + """ + Convert the torso of the model to float32. + """ + self.input_blocks.apply(convert_module_to_f32) + self.middle_block.apply(convert_module_to_f32) + self.output_blocks.apply(convert_module_to_f32) + + def forward(self, x, timesteps=None, context=None, y=None,**kwargs): + """ + Apply the model to an input batch. + :param x: an [N x C x ...] Tensor of inputs. + :param timesteps: a 1-D batch of timesteps. + :param context: conditioning plugged in via crossattn + :param y: an [N] Tensor of labels, if class-conditional. + :return: an [N x C x ...] Tensor of outputs. + """ + assert (y is not None) == ( + self.num_classes is not None + ), "must specify y if and only if the model is class-conditional" + hs = [] + t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) + emb = self.time_embed(t_emb) + + if self.num_classes is not None: + assert y.shape == (x.shape[0],) + emb = emb + self.label_emb(y) + + h = x.type(self.dtype_) + for module in self.input_blocks: + h = module(h, emb, context) + hs.append(h) + h = self.middle_block(h, emb, context) + for module in self.output_blocks: + h = torch.cat([h, hs.pop()], dim=1) + h = module(h, emb, context) + h = h.type(x.dtype) + if self.predict_codebook_ids: + return self.id_predictor(h) + else: + return self.out(h) + + +class EncoderUNetModel(nn.Module): + """ + The half UNet model with attention and timestep embedding. + For usage, see UNet. + """ + + def __init__( + self, + image_size, + in_channels, + model_channels, + out_channels, + num_res_blocks, + attention_resolutions, + dropout=0, + channel_mult=(1, 2, 4, 8), + conv_resample=True, + dims=2, + use_checkpoint=False, + use_fp16=False, + num_heads=1, + num_head_channels=-1, + num_heads_upsample=-1, + use_scale_shift_norm=False, + resblock_updown=False, + use_new_attention_order=False, + pool="adaptive", + *args, + **kwargs + ): + super().__init__() + + if num_heads_upsample == -1: + num_heads_upsample = num_heads + + self.in_channels = in_channels + self.model_channels = model_channels + self.out_channels = out_channels + self.num_res_blocks = num_res_blocks + self.attention_resolutions = attention_resolutions + self.dropout = dropout + self.channel_mult = channel_mult + self.conv_resample = conv_resample + self.use_checkpoint = use_checkpoint + self.dtype = torch.float16 if use_fp16 else torch.float32 + self.num_heads = num_heads + self.num_head_channels = num_head_channels + self.num_heads_upsample = num_heads_upsample + + time_embed_dim = model_channels * 4 + self.time_embed = nn.Sequential( + linear(model_channels, time_embed_dim), + nn.SiLU(), + linear(time_embed_dim, time_embed_dim), + ) + + self.input_blocks = nn.ModuleList( + [ + TimestepEmbedSequential( + conv_nd(dims, in_channels, model_channels, 3, padding=1) + ) + ] + ) + self._feature_size = model_channels + input_block_chans = [model_channels] + ch = model_channels + ds = 1 + for level, mult in enumerate(channel_mult): + for _ in range(num_res_blocks): + layers = [ + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=mult * model_channels, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ) + ] + ch = mult * model_channels + if ds in attention_resolutions: + layers.append( + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads, + num_head_channels=num_head_channels, + use_new_attention_order=use_new_attention_order, + ) + ) + self.input_blocks.append(TimestepEmbedSequential(*layers)) + self._feature_size += ch + input_block_chans.append(ch) + if level != len(channel_mult) - 1: + out_ch = ch + self.input_blocks.append( + TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=out_ch, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + down=True, + ) + if resblock_updown + else Downsample( + ch, conv_resample, dims=dims, out_channels=out_ch + ) + ) + ) + ch = out_ch + input_block_chans.append(ch) + ds *= 2 + self._feature_size += ch + + self.middle_block = TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ), + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads, + num_head_channels=num_head_channels, + use_new_attention_order=use_new_attention_order, + ), + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ), + ) + self._feature_size += ch + self.pool = pool + if pool == "adaptive": + self.out = nn.Sequential( + normalization(ch), + nn.SiLU(), + nn.AdaptiveAvgPool2d((1, 1)), + zero_module(conv_nd(dims, ch, out_channels, 1)), + nn.Flatten(), + ) + elif pool == "attention": + assert num_head_channels != -1 + self.out = nn.Sequential( + normalization(ch), + nn.SiLU(), + AttentionPool2d( + (image_size // ds), ch, num_head_channels, out_channels + ), + ) + elif pool == "spatial": + self.out = nn.Sequential( + nn.Linear(self._feature_size, 2048), + nn.ReLU(), + nn.Linear(2048, self.out_channels), + ) + elif pool == "spatial_v2": + self.out = nn.Sequential( + nn.Linear(self._feature_size, 2048), + normalization(2048), + nn.SiLU(), + nn.Linear(2048, self.out_channels), + ) + else: + raise NotImplementedError(f"Unexpected {pool} pooling") + + def convert_to_fp16(self): + """ + Convert the torso of the model to float16. + """ + self.input_blocks.apply(convert_module_to_f16) + self.middle_block.apply(convert_module_to_f16) + + def convert_to_fp32(self): + """ + Convert the torso of the model to float32. + """ + self.input_blocks.apply(convert_module_to_f32) + self.middle_block.apply(convert_module_to_f32) + + def forward(self, x, timesteps): + """ + Apply the model to an input batch. + :param x: an [N x C x ...] Tensor of inputs. + :param timesteps: a 1-D batch of timesteps. + :return: an [N x K] Tensor of outputs. + """ + emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) + + results = [] + h = x.type(self.dtype) + for module in self.input_blocks: + h = module(h, emb) + if self.pool.startswith("spatial"): + results.append(h.type(x.dtype).mean(dim=(2, 3))) + h = self.middle_block(h, emb) + if self.pool.startswith("spatial"): + results.append(h.type(x.dtype).mean(dim=(2, 3))) + h = torch.cat(results, axis=-1) + return self.out(h) + else: + h = h.type(x.dtype) + return self.out(h) + diff --git a/src/diffusers/pipeline_utils.py b/src/diffusers/pipeline_utils.py index dfc7f6d681..daef124a49 100644 --- a/src/diffusers/pipeline_utils.py +++ b/src/diffusers/pipeline_utils.py @@ -57,14 +57,13 @@ class DiffusionPipeline(ConfigMixin): class_name = module.__class__.__name__ register_dict = {name: (library, class_name)} - # save model index config self.register(**register_dict) # set models setattr(self, name, module) - + register_dict = {"_module" : self.__module__.split(".")[-1] + ".py"} self.register(**register_dict) @@ -103,15 +102,17 @@ class DiffusionPipeline(ConfigMixin): cached_folder = pretrained_model_name_or_path config_dict = cls.get_config_dict(cached_folder) - - module = config_dict["_module"] - class_name_ = config_dict["_class_name"] - - if class_name_ == cls.__name__: + + module_candidate = config_dict["_module"] + + # if we load from explicit class, let's use it + if cls != DiffusionPipeline: pipeline_class = cls else: + # else we need to load the correct module from the Hub + class_name_ = config_dict["_class_name"] + module = module_candidate pipeline_class = get_class_from_dynamic_module(cached_folder, module, class_name_, cached_folder) - init_dict, _ = pipeline_class.extract_init_dict(config_dict, **kwargs) @@ -120,8 +121,9 @@ class DiffusionPipeline(ConfigMixin): for name, (library_name, class_name) in init_dict.items(): importable_classes = LOADABLE_CLASSES[library_name] - if library_name == module: + if library_name == module_candidate: # TODO(Suraj) + # for vq pass library = importlib.import_module(library_name) diff --git a/src/diffusers/schedulers/ddim.py b/src/diffusers/schedulers/ddim.py new file mode 100644 index 0000000000..0bcf59d263 --- /dev/null +++ b/src/diffusers/schedulers/ddim.py @@ -0,0 +1,102 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import torch +import math +from torch import nn + +from ..configuration_utils import ConfigMixin +from .schedulers_utils import linear_beta_schedule, betas_for_alpha_bar + + +SAMPLING_CONFIG_NAME = "scheduler_config.json" + + +class GaussianDDPMScheduler(nn.Module, ConfigMixin): + + config_name = SAMPLING_CONFIG_NAME + + def __init__( + self, + timesteps=1000, + beta_start=0.0001, + beta_end=0.02, + beta_schedule="linear", + variance_type="fixed_small", + ): + super().__init__() + self.register( + timesteps=timesteps, + beta_start=beta_start, + beta_end=beta_end, + beta_schedule=beta_schedule, + variance_type=variance_type, + ) + self.num_timesteps = int(timesteps) + + if beta_schedule == "linear": + betas = linear_beta_schedule(timesteps, beta_start=beta_start, beta_end=beta_end) + elif beta_schedule == "squaredcos_cap_v2": + # GLIDE cosine schedule + betas = betas_for_alpha_bar( + timesteps, + lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, + ) + else: + raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") + + alphas = 1.0 - betas + alphas_cumprod = torch.cumprod(alphas, axis=0) + alphas_cumprod_prev = torch.nn.functional.pad(alphas_cumprod[:-1], (1, 0), value=1.0) + + variance = betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod) + + if variance_type == "fixed_small": + log_variance = torch.log(variance.clamp(min=1e-20)) + elif variance_type == "fixed_large": + log_variance = torch.log(torch.cat([variance[1:2], betas[1:]], dim=0)) + + self.register_buffer("betas", betas.to(torch.float32)) + self.register_buffer("alphas", alphas.to(torch.float32)) + self.register_buffer("alphas_cumprod", alphas_cumprod.to(torch.float32)) + + self.register_buffer("log_variance", log_variance.to(torch.float32)) + + def get_alpha(self, time_step): + return self.alphas[time_step] + + def get_beta(self, time_step): + return self.betas[time_step] + + def get_alpha_prod(self, time_step): + if time_step < 0: + return torch.tensor(1.0) + return self.alphas_cumprod[time_step] + + def sample_variance(self, time_step, shape, device, generator=None): + variance = self.log_variance[time_step] + nonzero_mask = torch.tensor([1 - (time_step == 0)], device=device).float()[None, :] + + noise = self.sample_noise(shape, device=device, generator=generator) + + sampled_variance = nonzero_mask * (0.5 * variance).exp() + sampled_variance = sampled_variance * noise + + return sampled_variance + + def sample_noise(self, shape, device, generator=None): + # always sample on CPU to be deterministic + return torch.randn(shape, generator=generator).to(device) + + def __len__(self): + return self.num_timesteps diff --git a/src/diffusers/schedulers/gaussian_ddpm.py b/src/diffusers/schedulers/gaussian_ddpm.py index 2a25cbbfc9..0bcf59d263 100644 --- a/src/diffusers/schedulers/gaussian_ddpm.py +++ b/src/diffusers/schedulers/gaussian_ddpm.py @@ -16,35 +16,12 @@ import math from torch import nn from ..configuration_utils import ConfigMixin +from .schedulers_utils import linear_beta_schedule, betas_for_alpha_bar SAMPLING_CONFIG_NAME = "scheduler_config.json" -def linear_beta_schedule(timesteps, beta_start, beta_end): - return torch.linspace(beta_start, beta_end, timesteps, dtype=torch.float64) - - -def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): - """ - Create a beta schedule that discretizes the given alpha_t_bar function, - which defines the cumulative product of (1-beta) over time from t = [0,1]. - - :param num_diffusion_timesteps: the number of betas to produce. - :param alpha_bar: a lambda that takes an argument t from 0 to 1 and - produces the cumulative product of (1-beta) up to that - part of the diffusion process. - :param max_beta: the maximum beta to use; use values lower than 1 to - prevent singularities. - """ - betas = [] - for i in range(num_diffusion_timesteps): - t1 = i / num_diffusion_timesteps - t2 = (i + 1) / num_diffusion_timesteps - betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) - return torch.tensor(betas, dtype=torch.float64) - - class GaussianDDPMScheduler(nn.Module, ConfigMixin): config_name = SAMPLING_CONFIG_NAME diff --git a/src/diffusers/schedulers/schedulers_utils.py b/src/diffusers/schedulers/schedulers_utils.py new file mode 100644 index 0000000000..582adfd07f --- /dev/null +++ b/src/diffusers/schedulers/schedulers_utils.py @@ -0,0 +1,38 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import torch + + +def linear_beta_schedule(timesteps, beta_start, beta_end): + return torch.linspace(beta_start, beta_end, timesteps, dtype=torch.float64) + + +def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): + """ + Create a beta schedule that discretizes the given alpha_t_bar function, + which defines the cumulative product of (1-beta) over time from t = [0,1]. + + :param num_diffusion_timesteps: the number of betas to produce. + :param alpha_bar: a lambda that takes an argument t from 0 to 1 and + produces the cumulative product of (1-beta) up to that + part of the diffusion process. + :param max_beta: the maximum beta to use; use values lower than 1 to + prevent singularities. + """ + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) + return torch.tensor(betas, dtype=torch.float64) diff --git a/tests/test_modeling_utils.py b/tests/test_modeling_utils.py index 0b7dece2b3..c5b18e4a39 100755 --- a/tests/test_modeling_utils.py +++ b/tests/test_modeling_utils.py @@ -25,6 +25,7 @@ import torch from diffusers import GaussianDDPMScheduler, UNetModel from diffusers.pipeline_utils import DiffusionPipeline from models.vision.ddpm.modeling_ddpm import DDPM +from models.vision.ddim.modeling_ddim import DDIM global_rng = random.Random() @@ -205,6 +206,7 @@ class SamplerTesterMixin(unittest.TestCase): class PipelineTesterMixin(unittest.TestCase): + def test_from_pretrained_save_pretrained(self): # 1. Load models model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32) @@ -241,3 +243,31 @@ class PipelineTesterMixin(unittest.TestCase): new_image = ddpm_from_hub(generator=generator) assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass" + + @slow + def test_ddpm_cifar10(self): + generator = torch.manual_seed(0) + model_id = "fusing/ddpm-cifar10" + + ddpm = DDPM.from_pretrained(model_id) + image = ddpm(generator=generator) + + image_slice = image[0, -1, -3:, -3:].cpu() + + assert image.shape == (1, 3, 32, 32) + expected_slice = torch.tensor([0.2250, 0.3375, 0.2360, 0.0930, 0.3440, 0.3156, 0.1937, 0.3585, 0.1761]) + assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2 + + @slow + def test_ddim_cifar10(self): + generator = torch.manual_seed(0) + model_id = "fusing/ddpm-cifar10" + + ddim = DDIM.from_pretrained(model_id) + image = ddim(generator=generator, eta=0.0) + + image_slice = image[0, -1, -3:, -3:].cpu() + + assert image.shape == (1, 3, 32, 32) + expected_slice = torch.tensor([-0.7688, -0.7690, -0.7597, -0.7660, -0.7713, -0.7531, -0.7009, -0.7098, -0.7350]) + assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2