diff --git a/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_img2img.py b/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_img2img.py index 33986b077a..6d3d42b7a6 100644 --- a/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_img2img.py +++ b/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_img2img.py @@ -778,30 +778,32 @@ class StableDiffusionXLImg2ImgIntegrationTests(unittest.TestCase): torch.cuda.empty_cache() def test_download_ckpt_diff_format_is_same(self): - ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/blob/main/sd_xl_refiner_1.0.safetensors" + ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/blob/main/sd_xl_refiner_1.0_0.9vae.safetensors" init_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_img2img/sketch-mountains-input.png" ) - pipe_single_file = StableDiffusionXLImg2ImgPipeline.from_single_file(ckpt_path, torch_dtype=torch.float16) - pipe_single_file.scheduler = DDIMScheduler.from_config(pipe_single_file.scheduler.config) - pipe_single_file.enable_model_cpu_offload() - pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) + pipe.unet.set_default_attn_processor() pipe.enable_model_cpu_offload() generator = torch.Generator(device="cpu").manual_seed(0) image = pipe( - prompt="mountains", image=init_image, num_inference_steps=2, generator=generator, output_type="np" + prompt="mountains", image=init_image, num_inference_steps=5, generator=generator, output_type="np" ).images[0] + pipe_single_file = StableDiffusionXLImg2ImgPipeline.from_single_file(ckpt_path, torch_dtype=torch.float16) + pipe_single_file.scheduler = DDIMScheduler.from_config(pipe_single_file.scheduler.config) + pipe_single_file.unet.set_default_attn_processor() + pipe_single_file.enable_model_cpu_offload() + generator = torch.Generator(device="cpu").manual_seed(0) image_single_file = pipe_single_file( - prompt="mountains", image=init_image, num_inference_steps=2, generator=generator, output_type="np" + prompt="mountains", image=init_image, num_inference_steps=5, generator=generator, output_type="np" ).images[0] max_diff = numpy_cosine_similarity_distance(image.flatten(), image_single_file.flatten()) - assert max_diff < 1e-3 + assert max_diff < 5e-3