From b83bdce42abb60e72314bb8507c710e6f649dfb1 Mon Sep 17 00:00:00 2001
From: Ella Charlaix <80481427+echarlaix@users.noreply.github.com>
Date: Wed, 26 Jul 2023 20:25:07 +0200
Subject: [PATCH] add openvino and onnx runtime SD XL documentation (#4285)
* add openvino SD XL documentation
* add onnx SD XL integration
* rephrase
* update doc
* add images
* update model
---
docs/source/en/optimization/onnx.md | 63 +++++++++++++++---
docs/source/en/optimization/open_vino.md | 85 +++++++++++++++++++++---
2 files changed, 130 insertions(+), 18 deletions(-)
diff --git a/docs/source/en/optimization/onnx.md b/docs/source/en/optimization/onnx.md
index 6f96ba0cc1..89ea435217 100644
--- a/docs/source/en/optimization/onnx.md
+++ b/docs/source/en/optimization/onnx.md
@@ -23,19 +23,20 @@ Install 🤗 Optimum with the following command for ONNX Runtime support:
pip install optimum["onnxruntime"]
```
-## Stable Diffusion Inference
+## Stable Diffusion
-To load an ONNX model and run inference with the ONNX Runtime, you need to replace [`StableDiffusionPipeline`] with `ORTStableDiffusionPipeline`. In case you want to load
-a PyTorch model and convert it to the ONNX format on-the-fly, you can set `export=True`.
+### Inference
+
+To load an ONNX model and run inference with the ONNX Runtime, you need to replace [`StableDiffusionPipeline`] with `ORTStableDiffusionPipeline`. In case you want to load a PyTorch model and convert it to the ONNX format on-the-fly, you can set `export=True`.
```python
from optimum.onnxruntime import ORTStableDiffusionPipeline
model_id = "runwayml/stable-diffusion-v1-5"
-pipe = ORTStableDiffusionPipeline.from_pretrained(model_id, export=True)
-prompt = "a photo of an astronaut riding a horse on mars"
-images = pipe(prompt).images[0]
-pipe.save_pretrained("./onnx-stable-diffusion-v1-5")
+pipeline = ORTStableDiffusionPipeline.from_pretrained(model_id, export=True)
+prompt = "sailing ship in storm by Leonardo da Vinci"
+image = pipeline(prompt).images[0]
+pipeline.save_pretrained("./onnx-stable-diffusion-v1-5")
```
If you want to export the pipeline in the ONNX format offline and later use it for inference,
@@ -51,15 +52,57 @@ Then perform inference:
from optimum.onnxruntime import ORTStableDiffusionPipeline
model_id = "sd_v15_onnx"
-pipe = ORTStableDiffusionPipeline.from_pretrained(model_id)
-prompt = "a photo of an astronaut riding a horse on mars"
-images = pipe(prompt).images[0]
+pipeline = ORTStableDiffusionPipeline.from_pretrained(model_id)
+prompt = "sailing ship in storm by Leonardo da Vinci"
+image = pipeline(prompt).images[0]
```
Notice that we didn't have to specify `export=True` above.
+
+

+
+
You can find more examples in [optimum documentation](https://huggingface.co/docs/optimum/).
+
+### Supported tasks
+
+| Task | Loading Class |
+|--------------------------------------|--------------------------------------|
+| `text-to-image` | `ORTStableDiffusionPipeline` |
+| `image-to-image` | `ORTStableDiffusionImg2ImgPipeline` |
+| `inpaint` | `ORTStableDiffusionInpaintPipeline` |
+
+## Stable Diffusion XL
+
+### Export
+
+To export your model to ONNX, you can use the [Optimum CLI](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli) as follows :
+
+```bash
+optimum-cli export onnx --model stabilityai/stable-diffusion-xl-base-1.0 --task stable-diffusion-xl sd_xl_onnx/
+```
+
+### Inference
+
+To load an ONNX model and run inference with ONNX Runtime, you need to replace `StableDiffusionPipelineXL` with `ORTStableDiffusionPipelineXL` :
+
+```python
+from optimum.onnxruntime import ORTStableDiffusionXLPipeline
+
+pipeline = ORTStableDiffusionXLPipeline.from_pretrained("sd_xl_onnx")
+prompt = "sailing ship in storm by Leonardo da Vinci"
+image = pipeline(prompt).images[0]
+```
+
+### Supported tasks
+
+| Task | Loading Class |
+|--------------------------------------|--------------------------------------|
+| `text-to-image` | `ORTStableDiffusionXLPipeline` |
+| `image-to-image` | `ORTStableDiffusionXLImg2ImgPipeline`|
+
## Known Issues
- Generating multiple prompts in a batch seems to take too much memory. While we look into it, you may need to iterate instead of batching.
diff --git a/docs/source/en/optimization/open_vino.md b/docs/source/en/optimization/open_vino.md
index 5366e86b4a..b944c24859 100644
--- a/docs/source/en/optimization/open_vino.md
+++ b/docs/source/en/optimization/open_vino.md
@@ -13,27 +13,96 @@ specific language governing permissions and limitations under the License.
# How to use OpenVINO for inference
-🤗 [Optimum](https://github.com/huggingface/optimum-intel) provides a Stable Diffusion pipeline compatible with OpenVINO. You can now easily perform inference with OpenVINO Runtime on a variety of Intel processors ([see](https://docs.openvino.ai/latest/openvino_docs_OV_UG_supported_plugins_Supported_Devices.html) the full list of supported devices).
+🤗 [Optimum](https://github.com/huggingface/optimum-intel) provides Stable Diffusion pipelines compatible with OpenVINO. You can now easily perform inference with OpenVINO Runtime on a variety of Intel processors ([see](https://docs.openvino.ai/latest/openvino_docs_OV_UG_supported_plugins_Supported_Devices.html) the full list of supported devices).
## Installation
Install 🤗 Optimum Intel with the following command:
```
-pip install optimum["openvino"]
+pip install --upgrade-strategy eager optimum["openvino"]
```
-## Stable Diffusion Inference
+The `--upgrade-strategy eager` option is needed to ensure [`optimum-intel`](https://github.com/huggingface/optimum-intel) is upgraded to its latest version.
+
+
+## Stable Diffusion
+
+### Inference
To load an OpenVINO model and run inference with OpenVINO Runtime, you need to replace `StableDiffusionPipeline` with `OVStableDiffusionPipeline`. In case you want to load a PyTorch model and convert it to the OpenVINO format on-the-fly, you can set `export=True`.
```python
-from optimum.intel.openvino import OVStableDiffusionPipeline
+from optimum.intel import OVStableDiffusionPipeline
model_id = "runwayml/stable-diffusion-v1-5"
-pipe = OVStableDiffusionPipeline.from_pretrained(model_id, export=True)
-prompt = "a photo of an astronaut riding a horse on mars"
-images = pipe(prompt).images[0]
+pipeline = OVStableDiffusionPipeline.from_pretrained(model_id, export=True)
+prompt = "sailing ship in storm by Rembrandt"
+image = pipeline(prompt).images[0]
+
+# Don't forget to save the exported model
+pipeline.save_pretrained("openvino-sd-v1-5")
```
-You can find more examples (such as static reshaping and model compilation) in [optimum documentation](https://huggingface.co/docs/optimum/intel/inference#export-and-inference-of-stable-diffusion-models).
+To further speed up inference, the model can be statically reshaped :
+
+```python
+# Define the shapes related to the inputs and desired outputs
+batch_size, num_images, height, width = 1, 1, 512, 512
+
+# Statically reshape the model
+pipeline.reshape(batch_size, height, width, num_images)
+# Compile the model before inference
+pipeline.compile()
+
+image = pipeline(
+ prompt,
+ height=height,
+ width=width,
+ num_images_per_prompt=num_images,
+).images[0]
+```
+
+In case you want to change any parameters such as the outputs height or width, you’ll need to statically reshape your model once again.
+
+
+

+
+
+
+### Supported tasks
+
+| Task | Loading Class |
+|--------------------------------------|--------------------------------------|
+| `text-to-image` | `OVStableDiffusionPipeline` |
+| `image-to-image` | `OVStableDiffusionImg2ImgPipeline` |
+| `inpaint` | `OVStableDiffusionInpaintPipeline` |
+
+You can find more examples in the optimum [documentation](https://huggingface.co/docs/optimum/intel/inference#stable-diffusion).
+
+
+## Stable Diffusion XL
+
+### Inference
+
+```python
+from optimum.intel import OVStableDiffusionXLPipeline
+
+model_id = "stabilityai/stable-diffusion-xl-base-1.0"
+pipeline = OVStableDiffusionXLPipeline.from_pretrained(model_id, export=True)
+prompt = "sailing ship in storm by Rembrandt"
+image = pipeline(prompt).images[0]
+```
+
+To further speed up inference, the model can be statically reshaped as showed above.
+You can find more examples in the optimum [documentation](https://huggingface.co/docs/optimum/intel/inference#stable-diffusion-xl).
+
+### Supported tasks
+
+| Task | Loading Class |
+|--------------------------------------|--------------------------------------|
+| `text-to-image` | `OVStableDiffusionXLPipeline` |
+| `image-to-image` | `OVStableDiffusionXLImg2ImgPipeline` |
+
+
+