diff --git a/src/diffusers/models/resnet.py b/src/diffusers/models/resnet.py index 4481e53303..bccbaf3a16 100644 --- a/src/diffusers/models/resnet.py +++ b/src/diffusers/models/resnet.py @@ -175,6 +175,7 @@ class Downsample(nn.Module): # unet.py, unet_grad_tts.py, unet_ldm.py, unet_glide.py, unet_score_vde.py +# => All 2D-Resnets are included here now! class ResnetBlock(nn.Module): def __init__( self, @@ -317,9 +318,6 @@ class ResnetBlock(nn.Module): num_groups = min(in_ch // 4, 32) num_groups_out = min(out_ch // 4, 32) temb_dim = temb_channels - # output_scale_factor = np.sqrt(2.0) - # non_linearity = "silu" - # use_nin_shortcut = in_channels != out_channels or use_nin_shortcut = True self.GroupNorm_0 = nn.GroupNorm(num_groups=num_groups, num_channels=in_ch, eps=eps) self.up = up @@ -337,13 +335,9 @@ class ResnetBlock(nn.Module): # 1x1 convolution with DDPM initialization. self.Conv_2 = conv2d(in_ch, out_ch, kernel_size=1, padding=0) - # self.skip_rescale = skip_rescale self.in_ch = in_ch self.out_ch = out_ch - # TODO(Patrick) - move to main init - self.is_overwritten = False - def set_weights_grad_tts(self): self.conv1.weight.data = self.block1.block[0].weight.data self.conv1.bias.data = self.block1.block[0].bias.data