diff --git a/docs/source/en/optimization/open_vino.mdx b/docs/source/en/optimization/open_vino.mdx index 58183db721..63027835af 100644 --- a/docs/source/en/optimization/open_vino.mdx +++ b/docs/source/en/optimization/open_vino.mdx @@ -10,6 +10,30 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o specific language governing permissions and limitations under the License. --> -# OpenVINO -Under construction 🚧 +# How to use OpenVINO for inference + +🤗 [Optimum](https://github.com/huggingface/optimum-intel) provides a Stable Diffusion pipeline compatible with OpenVINO. You can now easily perform inference with OpenVINO Runtime on a variety of Intel processors ([see](https://docs.openvino.ai/latest/openvino_docs_OV_UG_supported_plugins_Supported_Devices.html) the full list of supported devices). + +## Installation + +Install 🤗 Optimum Intel with the following command: + +``` +pip install optimum["openvino"] +``` + +## Stable Diffusion Inference + +To load an OpenVINO model and run inference with OpenVINO Runtime, you need to replace `StableDiffusionPipeline` with `OVStableDiffusionPipeline`. In case you want to load a PyTorch model and convert it to the OpenVINO format on-the-fly, you can set `export=True`. + +```python +from optimum.intel.openvino import OVStableDiffusionPipeline + +model_id = "runwayml/stable-diffusion-v1-5" +pipe = OVStableDiffusionPipeline.from_pretrained(model_id, export=True) +prompt = "a photo of an astronaut riding a horse on mars" +images = pipe(prompt).images[0] +``` + +You can find more examples in [optimum documentation](https://huggingface.co/docs/optimum/intel/inference#export-and-inference-of-stable-diffusion-models).