mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Add Scheduler.from_pretrained and better scheduler changing (#1286)
* add conversion script for vae * uP * uP * more changes * push * up * finish again * up * up * up * up * finish * up * uP * up * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> Co-authored-by: Anton Lozhkov <anton@huggingface.co> Co-authored-by: Suraj Patil <surajp815@gmail.com> * up * up Co-authored-by: Pedro Cuenca <pedro@huggingface.co> Co-authored-by: Anton Lozhkov <anton@huggingface.co> Co-authored-by: Suraj Patil <surajp815@gmail.com>
This commit is contained in:
committed by
GitHub
parent
db1cb0b1a2
commit
a0520193e1
@@ -19,7 +19,7 @@ In the following we explain in-detail how to easily load:
|
||||
|
||||
- *Complete Diffusion Pipelines* via the [`DiffusionPipeline.from_pretrained`]
|
||||
- *Diffusion Models* via [`ModelMixin.from_pretrained`]
|
||||
- *Schedulers* via [`ConfigMixin.from_config`]
|
||||
- *Schedulers* via [`SchedulerMixin.from_pretrained`]
|
||||
|
||||
## Loading pipelines
|
||||
|
||||
@@ -137,15 +137,15 @@ from diffusers import DiffusionPipeline, EulerDiscreteScheduler, DPMSolverMultis
|
||||
|
||||
repo_id = "runwayml/stable-diffusion-v1-5"
|
||||
|
||||
scheduler = EulerDiscreteScheduler.from_config(repo_id, subfolder="scheduler")
|
||||
scheduler = EulerDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
|
||||
# or
|
||||
# scheduler = DPMSolverMultistepScheduler.from_config(repo_id, subfolder="scheduler")
|
||||
# scheduler = DPMSolverMultistepScheduler.from_pretrained(repo_id, subfolder="scheduler")
|
||||
|
||||
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, scheduler=scheduler)
|
||||
```
|
||||
|
||||
Three things are worth paying attention to here.
|
||||
- First, the scheduler is loaded with [`ConfigMixin.from_config`] since it only depends on a configuration file and not any parameterized weights
|
||||
- First, the scheduler is loaded with [`SchedulerMixin.from_pretrained`]
|
||||
- Second, the scheduler is loaded with a function argument, called `subfolder="scheduler"` as the configuration of stable diffusion's scheduling is defined in a [subfolder of the official pipeline repository](https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main/scheduler)
|
||||
- Third, the scheduler instance can simply be passed with the `scheduler` keyword argument to [`DiffusionPipeline.from_pretrained`]. This works because the [`StableDiffusionPipeline`] defines its scheduler with the `scheduler` attribute. It's not possible to use a different name, such as `sampler=scheduler` since `sampler` is not a defined keyword for [`StableDiffusionPipeline.__init__`]
|
||||
|
||||
@@ -337,8 +337,8 @@ model = UNet2DModel.from_pretrained(repo_id)
|
||||
|
||||
## Loading schedulers
|
||||
|
||||
Schedulers cannot be loaded via a `from_pretrained` method, but instead rely on [`ConfigMixin.from_config`]. Schedulers are **not parameterized** or **trained**, but instead purely defined by a configuration file.
|
||||
Therefore the loading method was given a different name here.
|
||||
Schedulers rely on [`SchedulerMixin.from_pretrained`]. Schedulers are **not parameterized** or **trained**, but instead purely defined by a configuration file.
|
||||
For consistency, we use the same method name as we do for models or pipelines, but no weights are loaded in this case.
|
||||
|
||||
In constrast to pipelines or models, loading schedulers does not consume any significant amount of memory and the same configuration file can often be used for a variety of different schedulers.
|
||||
For example, all of:
|
||||
@@ -367,13 +367,13 @@ from diffusers import (
|
||||
|
||||
repo_id = "runwayml/stable-diffusion-v1-5"
|
||||
|
||||
ddpm = DDPMScheduler.from_config(repo_id, subfolder="scheduler")
|
||||
ddim = DDIMScheduler.from_config(repo_id, subfolder="scheduler")
|
||||
pndm = PNDMScheduler.from_config(repo_id, subfolder="scheduler")
|
||||
lms = LMSDiscreteScheduler.from_config(repo_id, subfolder="scheduler")
|
||||
euler_anc = EulerAncestralDiscreteScheduler.from_config(repo_id, subfolder="scheduler")
|
||||
euler = EulerDiscreteScheduler.from_config(repo_id, subfolder="scheduler")
|
||||
dpm = DPMSolverMultistepScheduler.from_config(repo_id, subfolder="scheduler")
|
||||
ddpm = DDPMScheduler.from_pretrained(repo_id, subfolder="scheduler")
|
||||
ddim = DDIMScheduler.from_pretrained(repo_id, subfolder="scheduler")
|
||||
pndm = PNDMScheduler.from_pretrained(repo_id, subfolder="scheduler")
|
||||
lms = LMSDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
|
||||
euler_anc = EulerAncestralDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
|
||||
euler = EulerDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
|
||||
dpm = DPMSolverMultistepScheduler.from_pretrained(repo_id, subfolder="scheduler")
|
||||
|
||||
# replace `dpm` with any of `ddpm`, `ddim`, `pndm`, `lms`, `euler`, `euler_anc`
|
||||
pipeline = StableDiffusionPipeline.from_pretrained(repo_id, scheduler=dpm)
|
||||
|
||||
262
docs/source/using-diffusers/schedulers.mdx
Normal file
262
docs/source/using-diffusers/schedulers.mdx
Normal file
@@ -0,0 +1,262 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Schedulers
|
||||
|
||||
Diffusion pipelines are inherently a collection of diffusion models and schedulers that are partly independent from each other. This means that one is able to switch out parts of the pipeline to better customize
|
||||
a pipeline to one's use case. The best example of this are the [Schedulers](../api/schedulers.mdx).
|
||||
|
||||
Whereas diffusion models usually simply define the forward pass from noise to a less noisy sample,
|
||||
schedulers define the whole denoising process, *i.e.*:
|
||||
- How many denoising steps?
|
||||
- Stochastic or deterministic?
|
||||
- What algorithm to use to find the denoised sample
|
||||
|
||||
They can be quite complex and often define a trade-off between **denoising speed** and **denoising quality**.
|
||||
It is extremely difficult to measure quantitatively which scheduler works best for a given diffusion pipeline, so it is often recommended to simply try out which works best.
|
||||
|
||||
The following paragraphs shows how to do so with the 🧨 Diffusers library.
|
||||
|
||||
## Load pipeline
|
||||
|
||||
Let's start by loading the stable diffusion pipeline.
|
||||
Remember that you have to be a registered user on the 🤗 Hugging Face Hub, and have "click-accepted" the [license](https://huggingface.co/runwayml/stable-diffusion-v1-5) in order to use stable diffusion.
|
||||
|
||||
```python
|
||||
from huggingface_hub import login
|
||||
from diffusers import DiffusionPipeline
|
||||
import torch
|
||||
|
||||
# first we need to login with our access token
|
||||
login()
|
||||
|
||||
# Now we can download the pipeline
|
||||
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
|
||||
```
|
||||
|
||||
Next, we move it to GPU:
|
||||
|
||||
```python
|
||||
pipeline.to("cuda")
|
||||
```
|
||||
|
||||
## Access the scheduler
|
||||
|
||||
The scheduler is always one of the components of the pipeline and is usually called `"scheduler"`.
|
||||
So it can be accessed via the `"scheduler"` property.
|
||||
|
||||
```python
|
||||
pipeline.scheduler
|
||||
```
|
||||
|
||||
**Output**:
|
||||
```
|
||||
PNDMScheduler {
|
||||
"_class_name": "PNDMScheduler",
|
||||
"_diffusers_version": "0.8.0.dev0",
|
||||
"beta_end": 0.012,
|
||||
"beta_schedule": "scaled_linear",
|
||||
"beta_start": 0.00085,
|
||||
"clip_sample": false,
|
||||
"num_train_timesteps": 1000,
|
||||
"set_alpha_to_one": false,
|
||||
"skip_prk_steps": true,
|
||||
"steps_offset": 1,
|
||||
"trained_betas": null
|
||||
}
|
||||
```
|
||||
|
||||
We can see that the scheduler is of type [`PNDMScheduler`].
|
||||
Cool, now let's compare the scheduler in its performance to other schedulers.
|
||||
First we define a prompt on which we will test all the different schedulers:
|
||||
|
||||
```python
|
||||
prompt = "A photograph of an astronaut riding a horse on Mars, high resolution, high definition."
|
||||
```
|
||||
|
||||
Next, we create a generator from a random seed that will ensure that we can generate similar images as well as run the pipeline:
|
||||
|
||||
```python
|
||||
generator = torch.Generator(device="cuda").manual_seed(8)
|
||||
image = pipeline(prompt, generator=generator).images[0]
|
||||
image
|
||||
```
|
||||
|
||||
<p align="center">
|
||||
<br>
|
||||
<img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/diffusers_docs/astronaut_pndm.png" width="400"/>
|
||||
<br>
|
||||
</p>
|
||||
|
||||
|
||||
## Changing the scheduler
|
||||
|
||||
Now we show how easy it is to change the scheduler of a pipeline. Every scheduler has a property [`SchedulerMixin.compatibles`]
|
||||
which defines all compatible schedulers. You can take a look at all available, compatible schedulers for the Stable Diffusion pipeline as follows.
|
||||
|
||||
```python
|
||||
pipeline.scheduler.compatibles
|
||||
```
|
||||
|
||||
**Output**:
|
||||
```
|
||||
[diffusers.schedulers.scheduling_lms_discrete.LMSDiscreteScheduler,
|
||||
diffusers.schedulers.scheduling_ddim.DDIMScheduler,
|
||||
diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler,
|
||||
diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler,
|
||||
diffusers.schedulers.scheduling_pndm.PNDMScheduler,
|
||||
diffusers.schedulers.scheduling_ddpm.DDPMScheduler,
|
||||
diffusers.schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteScheduler]
|
||||
```
|
||||
|
||||
Cool, lots of schedulers to look at. Feel free to have a look at their respective class definitions:
|
||||
|
||||
- [`LMSDiscreteScheduler`],
|
||||
- [`DDIMScheduler`],
|
||||
- [`DPMSolverMultistepScheduler`],
|
||||
- [`EulerDiscreteScheduler`],
|
||||
- [`PNDMScheduler`],
|
||||
- [`DDPMScheduler`],
|
||||
- [`EulerAncestralDiscreteScheduler`].
|
||||
|
||||
We will now compare the input prompt with all other schedulers. To change the scheduler of the pipeline you can make use of the
|
||||
convenient [`ConfigMixin.config`] property in combination with the [`ConfigMixin.from_config`] function.
|
||||
|
||||
```python
|
||||
pipeline.scheduler.config
|
||||
```
|
||||
|
||||
returns a dictionary of the configuration of the scheduler:
|
||||
|
||||
**Output**:
|
||||
```
|
||||
FrozenDict([('num_train_timesteps', 1000),
|
||||
('beta_start', 0.00085),
|
||||
('beta_end', 0.012),
|
||||
('beta_schedule', 'scaled_linear'),
|
||||
('trained_betas', None),
|
||||
('skip_prk_steps', True),
|
||||
('set_alpha_to_one', False),
|
||||
('steps_offset', 1),
|
||||
('_class_name', 'PNDMScheduler'),
|
||||
('_diffusers_version', '0.8.0.dev0'),
|
||||
('clip_sample', False)])
|
||||
```
|
||||
|
||||
This configuration can then be used to instantiate a scheduler
|
||||
of a different class that is compatible with the pipeline. Here,
|
||||
we change the scheduler to the [`DDIMScheduler`].
|
||||
|
||||
```python
|
||||
from diffusers import DDIMScheduler
|
||||
|
||||
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
|
||||
```
|
||||
|
||||
Cool, now we can run the pipeline again to compare the generation quality.
|
||||
|
||||
```python
|
||||
generator = torch.Generator(device="cuda").manual_seed(8)
|
||||
image = pipeline(prompt, generator=generator).images[0]
|
||||
image
|
||||
```
|
||||
|
||||
<p align="center">
|
||||
<br>
|
||||
<img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/diffusers_docs/astronaut_ddim.png" width="400"/>
|
||||
<br>
|
||||
</p>
|
||||
|
||||
|
||||
## Compare schedulers
|
||||
|
||||
So far we have tried running the stable diffusion pipeline with two schedulers: [`PNDMScheduler`] and [`DDIMScheduler`].
|
||||
A number of better schedulers have been released that can be run with much fewer steps, let's compare them here:
|
||||
|
||||
[`LMSDiscreteScheduler`] usually leads to better results:
|
||||
|
||||
```python
|
||||
from diffusers import LMSDiscreteScheduler
|
||||
|
||||
pipeline.scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
|
||||
|
||||
generator = torch.Generator(device="cuda").manual_seed(8)
|
||||
image = pipeline(prompt, generator=generator).images[0]
|
||||
image
|
||||
```
|
||||
|
||||
<p align="center">
|
||||
<br>
|
||||
<img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/diffusers_docs/astronaut_lms.png" width="400"/>
|
||||
<br>
|
||||
</p>
|
||||
|
||||
|
||||
[`EulerDiscreteScheduler`] and [`EulerAncestralDiscreteScheduler`] can generate high quality results with as little as 30 steps.
|
||||
|
||||
```python
|
||||
from diffusers import EulerDiscreteScheduler
|
||||
|
||||
pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)
|
||||
|
||||
generator = torch.Generator(device="cuda").manual_seed(8)
|
||||
image = pipeline(prompt, generator=generator, num_inference_steps=30).images[0]
|
||||
image
|
||||
```
|
||||
|
||||
<p align="center">
|
||||
<br>
|
||||
<img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/diffusers_docs/astronaut_euler_discrete.png" width="400"/>
|
||||
<br>
|
||||
</p>
|
||||
|
||||
|
||||
and:
|
||||
|
||||
```python
|
||||
from diffusers import EulerAncestralDiscreteScheduler
|
||||
|
||||
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config)
|
||||
|
||||
generator = torch.Generator(device="cuda").manual_seed(8)
|
||||
image = pipeline(prompt, generator=generator, num_inference_steps=30).images[0]
|
||||
image
|
||||
```
|
||||
|
||||
<p align="center">
|
||||
<br>
|
||||
<img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/diffusers_docs/astronaut_euler_ancestral.png" width="400"/>
|
||||
<br>
|
||||
</p>
|
||||
|
||||
|
||||
At the time of writing this doc [`DPMSolverMultistepScheduler`] gives arguably the best speed/quality trade-off and can be run with as little
|
||||
as 20 steps.
|
||||
|
||||
```python
|
||||
from diffusers import DPMSolverMultistepScheduler
|
||||
|
||||
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
|
||||
|
||||
generator = torch.Generator(device="cuda").manual_seed(8)
|
||||
image = pipeline(prompt, generator=generator, num_inference_steps=20).images[0]
|
||||
image
|
||||
```
|
||||
|
||||
<p align="center">
|
||||
<br>
|
||||
<img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/diffusers_docs/astronaut_dpm.png" width="400"/>
|
||||
<br>
|
||||
</p>
|
||||
|
||||
As you can see most images look very similar and are arguably of very similar quality. It often really depends on the specific use case which scheduler to choose. A good approach is always to run multiple different
|
||||
schedulers to compare results.
|
||||
Reference in New Issue
Block a user