diff --git a/benchmarks/base_classes.py b/benchmarks/base_classes.py index dc1ca72388..45bf65c93c 100644 --- a/benchmarks/base_classes.py +++ b/benchmarks/base_classes.py @@ -34,7 +34,7 @@ from utils import ( # noqa: E402 RESOLUTION_MAPPING = { - "runwayml/stable-diffusion-v1-5": (512, 512), + "Lykon/DreamShaper": (512, 512), "lllyasviel/sd-controlnet-canny": (512, 512), "diffusers/controlnet-canny-sdxl-1.0": (1024, 1024), "TencentARC/t2iadapter_canny_sd14v1": (512, 512), @@ -268,7 +268,7 @@ class IPAdapterTextToImageBenchmark(TextToImageBenchmark): class ControlNetBenchmark(TextToImageBenchmark): pipeline_class = StableDiffusionControlNetPipeline aux_network_class = ControlNetModel - root_ckpt = "runwayml/stable-diffusion-v1-5" + root_ckpt = "Lykon/DreamShaper" url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_image_condition.png" image = load_image(url).convert("RGB") @@ -311,7 +311,7 @@ class ControlNetSDXLBenchmark(ControlNetBenchmark): class T2IAdapterBenchmark(ControlNetBenchmark): pipeline_class = StableDiffusionAdapterPipeline aux_network_class = T2IAdapter - root_ckpt = "CompVis/stable-diffusion-v1-4" + root_ckpt = "Lykon/DreamShaper" url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_for_adapter.png" image = load_image(url).convert("L") diff --git a/benchmarks/benchmark_ip_adapters.py b/benchmarks/benchmark_ip_adapters.py index 5c11ab3838..9a31a21fc6 100644 --- a/benchmarks/benchmark_ip_adapters.py +++ b/benchmarks/benchmark_ip_adapters.py @@ -7,7 +7,8 @@ from base_classes import IPAdapterTextToImageBenchmark # noqa: E402 IP_ADAPTER_CKPTS = { - "runwayml/stable-diffusion-v1-5": ("h94/IP-Adapter", "ip-adapter_sd15.bin"), + # because original SD v1.5 has been taken down. + "Lykon/DreamShaper": ("h94/IP-Adapter", "ip-adapter_sd15.bin"), "stabilityai/stable-diffusion-xl-base-1.0": ("h94/IP-Adapter", "ip-adapter_sdxl.bin"), } @@ -17,7 +18,7 @@ if __name__ == "__main__": parser.add_argument( "--ckpt", type=str, - default="runwayml/stable-diffusion-v1-5", + default="rstabilityai/stable-diffusion-xl-base-1.0", choices=list(IP_ADAPTER_CKPTS.keys()), ) parser.add_argument("--batch_size", type=int, default=1) diff --git a/benchmarks/benchmark_sd_img.py b/benchmarks/benchmark_sd_img.py index 491e7c9a65..772befe879 100644 --- a/benchmarks/benchmark_sd_img.py +++ b/benchmarks/benchmark_sd_img.py @@ -11,9 +11,9 @@ if __name__ == "__main__": parser.add_argument( "--ckpt", type=str, - default="runwayml/stable-diffusion-v1-5", + default="Lykon/DreamShaper", choices=[ - "runwayml/stable-diffusion-v1-5", + "Lykon/DreamShaper", "stabilityai/stable-diffusion-2-1", "stabilityai/stable-diffusion-xl-refiner-1.0", "stabilityai/sdxl-turbo", diff --git a/benchmarks/benchmark_sd_inpainting.py b/benchmarks/benchmark_sd_inpainting.py index 8f36883e16..143adcb0d8 100644 --- a/benchmarks/benchmark_sd_inpainting.py +++ b/benchmarks/benchmark_sd_inpainting.py @@ -11,9 +11,9 @@ if __name__ == "__main__": parser.add_argument( "--ckpt", type=str, - default="runwayml/stable-diffusion-v1-5", + default="Lykon/DreamShaper", choices=[ - "runwayml/stable-diffusion-v1-5", + "Lykon/DreamShaper", "stabilityai/stable-diffusion-2-1", "stabilityai/stable-diffusion-xl-base-1.0", ], diff --git a/benchmarks/benchmark_text_to_image.py b/benchmarks/benchmark_text_to_image.py index caa97b0c5e..ddc7fb2676 100644 --- a/benchmarks/benchmark_text_to_image.py +++ b/benchmarks/benchmark_text_to_image.py @@ -7,7 +7,7 @@ from base_classes import TextToImageBenchmark, TurboTextToImageBenchmark # noqa ALL_T2I_CKPTS = [ - "runwayml/stable-diffusion-v1-5", + "Lykon/DreamShaper", "segmind/SSD-1B", "stabilityai/stable-diffusion-xl-base-1.0", "kandinsky-community/kandinsky-2-2-decoder", @@ -21,7 +21,7 @@ if __name__ == "__main__": parser.add_argument( "--ckpt", type=str, - default="runwayml/stable-diffusion-v1-5", + default="Lykon/DreamShaper", choices=ALL_T2I_CKPTS, ) parser.add_argument("--batch_size", type=int, default=1) diff --git a/docs/source/en/_toctree.yml b/docs/source/en/_toctree.yml index 445b538dab..a282ca717a 100644 --- a/docs/source/en/_toctree.yml +++ b/docs/source/en/_toctree.yml @@ -161,6 +161,8 @@ title: DeepCache - local: optimization/tgate title: TGATE + - local: optimization/xdit + title: xDiT - sections: - local: using-diffusers/stable_diffusion_jax_how_to title: JAX/Flax diff --git a/docs/source/en/api/pipelines/animatediff.md b/docs/source/en/api/pipelines/animatediff.md index bfd6ab973d..7cacad87d7 100644 --- a/docs/source/en/api/pipelines/animatediff.md +++ b/docs/source/en/api/pipelines/animatediff.md @@ -29,6 +29,7 @@ The abstract of the paper is the following: | [AnimateDiffSparseControlNetPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py) | *Controlled Video-to-Video Generation with AnimateDiff using SparseCtrl* | | [AnimateDiffSDXLPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py) | *Video-to-Video Generation with AnimateDiff* | | [AnimateDiffVideoToVideoPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py) | *Video-to-Video Generation with AnimateDiff* | +| [AnimateDiffVideoToVideoControlNetPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py) | *Video-to-Video Generation with AnimateDiff using ControlNet* | ## Available checkpoints @@ -518,6 +519,97 @@ Here are some sample outputs: + + +### AnimateDiffVideoToVideoControlNetPipeline + +AnimateDiff can be used together with ControlNets to enhance video-to-video generation by allowing for precise control over the output. ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala, and allows you to condition Stable Diffusion with an additional control image to ensure that the spatial information is preserved throughout the video. + +This pipeline allows you to condition your generation both on the original video and on a sequence of control images. + +```python +import torch +from PIL import Image +from tqdm.auto import tqdm + +from controlnet_aux.processor import OpenposeDetector +from diffusers import AnimateDiffVideoToVideoControlNetPipeline +from diffusers.utils import export_to_gif, load_video +from diffusers import AutoencoderKL, ControlNetModel, MotionAdapter, LCMScheduler + +# Load the ControlNet +controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16) +# Load the motion adapter +motion_adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM") +# Load SD 1.5 based finetuned model +vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16) +pipe = AnimateDiffVideoToVideoControlNetPipeline.from_pretrained( + "SG161222/Realistic_Vision_V5.1_noVAE", + motion_adapter=motion_adapter, + controlnet=controlnet, + vae=vae, +).to(device="cuda", dtype=torch.float16) + +# Enable LCM to speed up inference +pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear") +pipe.load_lora_weights("wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora") +pipe.set_adapters(["lcm-lora"], [0.8]) + +video = load_video("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/dance.gif") +video = [frame.convert("RGB") for frame in video] + +prompt = "astronaut in space, dancing" +negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly" + +# Create controlnet preprocessor +open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators").to("cuda") + +# Preprocess controlnet images +conditioning_frames = [] +for frame in tqdm(video): + conditioning_frames.append(open_pose(frame)) + +strength = 0.8 +with torch.inference_mode(): + video = pipe( + video=video, + prompt=prompt, + negative_prompt=negative_prompt, + num_inference_steps=10, + guidance_scale=2.0, + controlnet_conditioning_scale=0.75, + conditioning_frames=conditioning_frames, + strength=strength, + generator=torch.Generator().manual_seed(42), + ).frames[0] + +video = [frame.resize(conditioning_frames[0].size) for frame in video] +export_to_gif(video, f"animatediff_vid2vid_controlnet.gif", fps=8) +``` + +Here are some sample outputs: + + + + + + + + + + +
Source VideoOutput Video
+ anime girl, dancing +
+ anime girl, dancing +
+ astronaut in space, dancing +
+ astronaut in space, dancing +
+ +**The lights and composition were transferred from the Source Video.** + ## Using Motion LoRAs Motion LoRAs are a collection of LoRAs that work with the `guoyww/animatediff-motion-adapter-v1-5-2` checkpoint. These LoRAs are responsible for adding specific types of motion to the animations. @@ -866,6 +958,12 @@ pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapt - all - __call__ +## AnimateDiffVideoToVideoControlNetPipeline + +[[autodoc]] AnimateDiffVideoToVideoControlNetPipeline + - all + - __call__ + ## AnimateDiffPipelineOutput [[autodoc]] pipelines.animatediff.AnimateDiffPipelineOutput diff --git a/docs/source/en/api/pipelines/kolors.md b/docs/source/en/api/pipelines/kolors.md index dce2779428..367eb4a485 100644 --- a/docs/source/en/api/pipelines/kolors.md +++ b/docs/source/en/api/pipelines/kolors.md @@ -105,3 +105,11 @@ image.save("kolors_ipa_sample.png") - all - __call__ + +## KolorsImg2ImgPipeline + +[[autodoc]] KolorsImg2ImgPipeline + +- all +- __call__ + diff --git a/docs/source/en/optimization/xdit.md b/docs/source/en/optimization/xdit.md new file mode 100644 index 0000000000..eab87f1c17 --- /dev/null +++ b/docs/source/en/optimization/xdit.md @@ -0,0 +1,122 @@ +# xDiT + +[xDiT](https://github.com/xdit-project/xDiT) is an inference engine designed for the large scale parallel deployment of Diffusion Transformers (DiTs). xDiT provides a suite of efficient parallel approaches for Diffusion Models, as well as GPU kernel accelerations. + +There are four parallel methods supported in xDiT, including [Unified Sequence Parallelism](https://arxiv.org/abs/2405.07719), [PipeFusion](https://arxiv.org/abs/2405.14430), CFG parallelism and data parallelism. The four parallel methods in xDiT can be configured in a hybrid manner, optimizing communication patterns to best suit the underlying network hardware. + +Optimization orthogonal to parallelization focuses on accelerating single GPU performance. In addition to utilizing well-known Attention optimization libraries, we leverage compilation acceleration technologies such as torch.compile and onediff. + +The overview of xDiT is shown as follows. + +
+ +
+You can install xDiT using the following command: + + +```bash +pip install xfuser +``` + +Here's an example of using xDiT to accelerate inference of a Diffusers model. + +```diff + import torch + from diffusers import StableDiffusion3Pipeline + + from xfuser import xFuserArgs, xDiTParallel + from xfuser.config import FlexibleArgumentParser + from xfuser.core.distributed import get_world_group + + def main(): ++ parser = FlexibleArgumentParser(description="xFuser Arguments") ++ args = xFuserArgs.add_cli_args(parser).parse_args() ++ engine_args = xFuserArgs.from_cli_args(args) ++ engine_config, input_config = engine_args.create_config() + + local_rank = get_world_group().local_rank + pipe = StableDiffusion3Pipeline.from_pretrained( + pretrained_model_name_or_path=engine_config.model_config.model, + torch_dtype=torch.float16, + ).to(f"cuda:{local_rank}") + +# do anything you want with pipeline here + ++ pipe = xDiTParallel(pipe, engine_config, input_config) + + pipe( + height=input_config.height, + width=input_config.height, + prompt=input_config.prompt, + num_inference_steps=input_config.num_inference_steps, + output_type=input_config.output_type, + generator=torch.Generator(device="cuda").manual_seed(input_config.seed), + ) + ++ if input_config.output_type == "pil": ++ pipe.save("results", "stable_diffusion_3") + +if __name__ == "__main__": + main() + +``` + +As you can see, we only need to use xFuserArgs from xDiT to get configuration parameters, and pass these parameters along with the pipeline object from the Diffusers library into xDiTParallel to complete the parallelization of a specific pipeline in Diffusers. + +xDiT runtime parameters can be viewed in the command line using `-h`, and you can refer to this [usage](https://github.com/xdit-project/xDiT?tab=readme-ov-file#2-usage) example for more details. + +xDiT needs to be launched using torchrun to support its multi-node, multi-GPU parallel capabilities. For example, the following command can be used for 8-GPU parallel inference: + +```bash +torchrun --nproc_per_node=8 ./inference.py --model models/FLUX.1-dev --data_parallel_degree 2 --ulysses_degree 2 --ring_degree 2 --prompt "A snowy mountain" "A small dog" --num_inference_steps 50 +``` + +## Supported models + +A subset of Diffusers models are supported in xDiT, such as Flux.1, Stable Diffusion 3, etc. The latest supported models can be found [here](https://github.com/xdit-project/xDiT?tab=readme-ov-file#-supported-dits). + +## Benchmark +We tested different models on various machines, and here is some of the benchmark data. + + +### Flux.1-schnell +
+ +
+ + +
+ +
+ +### Stable Diffusion 3 +
+ +
+ +
+ +
+ +### HunyuanDiT +
+ +
+ +
+ +
+ +
+ +
+ +More detailed performance metric can be found on our [github page](https://github.com/xdit-project/xDiT?tab=readme-ov-file#perf). + +## Reference + +[xDiT-project](https://github.com/xdit-project/xDiT) + +[USP: A Unified Sequence Parallelism Approach for Long Context Generative AI](https://arxiv.org/abs/2405.07719) + +[PipeFusion: Displaced Patch Pipeline Parallelism for Inference of Diffusion Transformer Models](https://arxiv.org/abs/2405.14430) \ No newline at end of file diff --git a/src/diffusers/__init__.py b/src/diffusers/__init__.py index af28b383b5..5b505b6a1f 100644 --- a/src/diffusers/__init__.py +++ b/src/diffusers/__init__.py @@ -245,6 +245,7 @@ else: "AnimateDiffPipeline", "AnimateDiffSDXLPipeline", "AnimateDiffSparseControlNetPipeline", + "AnimateDiffVideoToVideoControlNetPipeline", "AnimateDiffVideoToVideoPipeline", "AudioLDM2Pipeline", "AudioLDM2ProjectionModel", @@ -694,6 +695,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: AnimateDiffPipeline, AnimateDiffSDXLPipeline, AnimateDiffSparseControlNetPipeline, + AnimateDiffVideoToVideoControlNetPipeline, AnimateDiffVideoToVideoPipeline, AudioLDM2Pipeline, AudioLDM2ProjectionModel, diff --git a/src/diffusers/models/controlnet_sd3.py b/src/diffusers/models/controlnet_sd3.py index 502ee68a4d..f19571dafb 100644 --- a/src/diffusers/models/controlnet_sd3.py +++ b/src/diffusers/models/controlnet_sd3.py @@ -242,9 +242,12 @@ class SD3ControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginal module.gradient_checkpointing = value @classmethod - def from_transformer(cls, transformer, num_layers=12, load_weights_from_transformer=True): + def from_transformer( + cls, transformer, num_layers=12, num_extra_conditioning_channels=1, load_weights_from_transformer=True + ): config = transformer.config config["num_layers"] = num_layers or config.num_layers + config["extra_conditioning_channels"] = num_extra_conditioning_channels controlnet = cls(**config) if load_weights_from_transformer: diff --git a/src/diffusers/pipelines/__init__.py b/src/diffusers/pipelines/__init__.py index ad7ea2872a..e4d37a905b 100644 --- a/src/diffusers/pipelines/__init__.py +++ b/src/diffusers/pipelines/__init__.py @@ -123,6 +123,7 @@ else: "AnimateDiffSDXLPipeline", "AnimateDiffSparseControlNetPipeline", "AnimateDiffVideoToVideoPipeline", + "AnimateDiffVideoToVideoControlNetPipeline", ] _import_structure["flux"] = [ "FluxControlNetPipeline", @@ -449,6 +450,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: AnimateDiffPipeline, AnimateDiffSDXLPipeline, AnimateDiffSparseControlNetPipeline, + AnimateDiffVideoToVideoControlNetPipeline, AnimateDiffVideoToVideoPipeline, ) from .audioldm import AudioLDMPipeline diff --git a/src/diffusers/pipelines/animatediff/__init__.py b/src/diffusers/pipelines/animatediff/__init__.py index 3ee72bc440..d916abf2d8 100644 --- a/src/diffusers/pipelines/animatediff/__init__.py +++ b/src/diffusers/pipelines/animatediff/__init__.py @@ -26,6 +26,7 @@ else: _import_structure["pipeline_animatediff_sdxl"] = ["AnimateDiffSDXLPipeline"] _import_structure["pipeline_animatediff_sparsectrl"] = ["AnimateDiffSparseControlNetPipeline"] _import_structure["pipeline_animatediff_video2video"] = ["AnimateDiffVideoToVideoPipeline"] + _import_structure["pipeline_animatediff_video2video_controlnet"] = ["AnimateDiffVideoToVideoControlNetPipeline"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: try: @@ -40,6 +41,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: from .pipeline_animatediff_sdxl import AnimateDiffSDXLPipeline from .pipeline_animatediff_sparsectrl import AnimateDiffSparseControlNetPipeline from .pipeline_animatediff_video2video import AnimateDiffVideoToVideoPipeline + from .pipeline_animatediff_video2video_controlnet import AnimateDiffVideoToVideoControlNetPipeline from .pipeline_output import AnimateDiffPipelineOutput else: diff --git a/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py b/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py new file mode 100644 index 0000000000..1d26f95a2f --- /dev/null +++ b/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py @@ -0,0 +1,1341 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union + +import torch +import torch.nn.functional as F +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection + +from ...image_processor import PipelineImageInput +from ...loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel, UNetMotionModel +from ...models.lora import adjust_lora_scale_text_encoder +from ...models.unets.unet_motion_model import MotionAdapter +from ...schedulers import ( + DDIMScheduler, + DPMSolverMultistepScheduler, + EulerAncestralDiscreteScheduler, + EulerDiscreteScheduler, + LMSDiscreteScheduler, + PNDMScheduler, +) +from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import is_compiled_module, randn_tensor +from ...video_processor import VideoProcessor +from ..controlnet.multicontrolnet import MultiControlNetModel +from ..free_init_utils import FreeInitMixin +from ..free_noise_utils import AnimateDiffFreeNoiseMixin +from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from .pipeline_output import AnimateDiffPipelineOutput + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + +EXAMPLE_DOC_STRING = """ + Examples: + ```py + >>> import torch + >>> from PIL import Image + >>> from tqdm.auto import tqdm + + >>> from diffusers import AnimateDiffVideoToVideoControlNetPipeline + >>> from diffusers.utils import export_to_gif, load_video + >>> from diffusers import AutoencoderKL, ControlNetModel, MotionAdapter, LCMScheduler + + >>> controlnet = ControlNetModel.from_pretrained( + ... "lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16 + ... ) + >>> motion_adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM") + >>> vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16) + + >>> pipe = AnimateDiffVideoToVideoControlNetPipeline.from_pretrained( + ... "SG161222/Realistic_Vision_V5.1_noVAE", + ... motion_adapter=motion_adapter, + ... controlnet=controlnet, + ... vae=vae, + ... ).to(device="cuda", dtype=torch.float16) + + >>> pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear") + >>> pipe.load_lora_weights( + ... "wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora" + ... ) + >>> pipe.set_adapters(["lcm-lora"], [0.8]) + + >>> video = load_video( + ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/dance.gif" + ... ) + >>> video = [frame.convert("RGB") for frame in video] + + >>> from controlnet_aux.processor import OpenposeDetector + + >>> open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators").to("cuda") + >>> for frame in tqdm(video): + ... conditioning_frames.append(open_pose(frame)) + + >>> prompt = "astronaut in space, dancing" + >>> negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly" + + >>> strength = 0.8 + >>> with torch.inference_mode(): + ... video = pipe( + ... video=video, + ... prompt=prompt, + ... negative_prompt=negative_prompt, + ... num_inference_steps=10, + ... guidance_scale=2.0, + ... controlnet_conditioning_scale=0.75, + ... conditioning_frames=conditioning_frames, + ... strength=strength, + ... generator=torch.Generator().manual_seed(42), + ... ).frames[0] + + >>> video = [frame.resize(conditioning_frames[0].size) for frame in video] + >>> export_to_gif(video, f"animatediff_vid2vid_controlnet.gif", fps=8) + ``` +""" + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents +def retrieve_latents( + encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" +): + if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, "latents"): + return encoder_output.latents + else: + raise AttributeError("Could not access latents of provided encoder_output") + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps +def retrieve_timesteps( + scheduler, + num_inference_steps: Optional[int] = None, + device: Optional[Union[str, torch.device]] = None, + timesteps: Optional[List[int]] = None, + sigmas: Optional[List[float]] = None, + **kwargs, +): + """ + Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles + custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. + + Args: + scheduler (`SchedulerMixin`): + The scheduler to get timesteps from. + num_inference_steps (`int`): + The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` + must be `None`. + device (`str` or `torch.device`, *optional*): + The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. + timesteps (`List[int]`, *optional*): + Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, + `num_inference_steps` and `sigmas` must be `None`. + sigmas (`List[float]`, *optional*): + Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, + `num_inference_steps` and `timesteps` must be `None`. + + Returns: + `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the + second element is the number of inference steps. + """ + if timesteps is not None and sigmas is not None: + raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") + if timesteps is not None: + accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" timestep schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" sigmas schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return timesteps, num_inference_steps + + +class AnimateDiffVideoToVideoControlNetPipeline( + DiffusionPipeline, + StableDiffusionMixin, + TextualInversionLoaderMixin, + IPAdapterMixin, + StableDiffusionLoraLoaderMixin, + FreeInitMixin, + AnimateDiffFreeNoiseMixin, +): + r""" + Pipeline for video-to-video generation with ControlNet guidance. + + This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods + implemented for all pipelines (downloading, saving, running on a particular device, etc.). + + The pipeline also inherits the following loading methods: + - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings + - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights + - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights + - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters + + Args: + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. + text_encoder ([`CLIPTextModel`]): + Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). + tokenizer (`CLIPTokenizer`): + A [`~transformers.CLIPTokenizer`] to tokenize text. + unet ([`UNet2DConditionModel`]): + A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents. + motion_adapter ([`MotionAdapter`]): + A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents. + controlnet ([`ControlNetModel`] or `List[ControlNetModel]` or `Tuple[ControlNetModel]` or `MultiControlNetModel`): + Provides additional conditioning to the `unet` during the denoising process. If you set multiple + ControlNets as a list, the outputs from each ControlNet are added together to create one combined + additional conditioning. + scheduler ([`SchedulerMixin`]): + A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of + [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. + """ + + model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" + _optional_components = ["feature_extractor", "image_encoder", "motion_adapter"] + _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] + + def __init__( + self, + vae: AutoencoderKL, + text_encoder: CLIPTextModel, + tokenizer: CLIPTokenizer, + unet: UNet2DConditionModel, + motion_adapter: MotionAdapter, + controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], + scheduler: Union[ + DDIMScheduler, + PNDMScheduler, + LMSDiscreteScheduler, + EulerDiscreteScheduler, + EulerAncestralDiscreteScheduler, + DPMSolverMultistepScheduler, + ], + feature_extractor: CLIPImageProcessor = None, + image_encoder: CLIPVisionModelWithProjection = None, + ): + super().__init__() + if isinstance(unet, UNet2DConditionModel): + unet = UNetMotionModel.from_unet2d(unet, motion_adapter) + + if isinstance(controlnet, (list, tuple)): + controlnet = MultiControlNetModel(controlnet) + + self.register_modules( + vae=vae, + text_encoder=text_encoder, + tokenizer=tokenizer, + unet=unet, + motion_adapter=motion_adapter, + controlnet=controlnet, + scheduler=scheduler, + feature_extractor=feature_extractor, + image_encoder=image_encoder, + ) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor) + self.control_video_processor = VideoProcessor( + vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False + ) + + # Copied from diffusers.pipelines.animatediff.pipeline_animatediff_video2video.AnimateDiffVideoToVideoPipeline.encode_prompt + def encode_prompt( + self, + prompt, + device, + num_images_per_prompt, + do_classifier_free_guidance, + negative_prompt=None, + prompt_embeds: Optional[torch.Tensor] = None, + negative_prompt_embeds: Optional[torch.Tensor] = None, + lora_scale: Optional[float] = None, + clip_skip: Optional[int] = None, + ): + r""" + Encodes the prompt into text encoder hidden states. + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + device: (`torch.device`): + torch device + num_images_per_prompt (`int`): + number of images that should be generated per prompt + do_classifier_free_guidance (`bool`): + whether to use classifier free guidance or not + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + prompt_embeds (`torch.Tensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.Tensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + lora_scale (`float`, *optional*): + A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. + clip_skip (`int`, *optional*): + Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that + the output of the pre-final layer will be used for computing the prompt embeddings. + """ + # set lora scale so that monkey patched LoRA + # function of text encoder can correctly access it + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + + # dynamically adjust the LoRA scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + + if prompt is not None and isinstance(prompt, (str, dict)): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + if prompt_embeds is None: + # textual inversion: process multi-vector tokens if necessary + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + + text_inputs = self.tokenizer( + prompt, + padding="max_length", + max_length=self.tokenizer.model_max_length, + truncation=True, + return_tensors="pt", + ) + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( + text_input_ids, untruncated_ids + ): + removed_text = self.tokenizer.batch_decode( + untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] + ) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {self.tokenizer.model_max_length} tokens: {removed_text}" + ) + + if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder( + text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True + ) + # Access the `hidden_states` first, that contains a tuple of + # all the hidden states from the encoder layers. Then index into + # the tuple to access the hidden states from the desired layer. + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + # We also need to apply the final LayerNorm here to not mess with the + # representations. The `last_hidden_states` that we typically use for + # obtaining the final prompt representations passes through the LayerNorm + # layer. + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + + bs_embed, seq_len, _ = prompt_embeds.shape + # duplicate text embeddings for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + + # get unconditional embeddings for classifier free guidance + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [""] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError( + f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" + f" {type(prompt)}." + ) + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError( + f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" + f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" + " the batch size of `prompt`." + ) + else: + uncond_tokens = negative_prompt + + # textual inversion: process multi-vector tokens if necessary + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer( + uncond_tokens, + padding="max_length", + max_length=max_length, + truncation=True, + return_tensors="pt", + ) + + if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + + negative_prompt_embeds = self.text_encoder( + uncond_input.input_ids.to(device), + attention_mask=attention_mask, + ) + negative_prompt_embeds = negative_prompt_embeds[0] + + if do_classifier_free_guidance: + # duplicate unconditional embeddings for each generation per prompt, using mps friendly method + seq_len = negative_prompt_embeds.shape[1] + + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + # Retrieve the original scale by scaling back the LoRA layers + unscale_lora_layers(self.text_encoder, lora_scale) + + return prompt_embeds, negative_prompt_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors="pt").pixel_values + + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder( + torch.zeros_like(image), output_hidden_states=True + ).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( + num_images_per_prompt, dim=0 + ) + return image_enc_hidden_states, uncond_image_enc_hidden_states + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + + return image_embeds, uncond_image_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds + def prepare_ip_adapter_image_embeds( + self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance + ): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError( + f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." + ) + + for single_ip_adapter_image, image_proj_layer in zip( + ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers + ): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + single_image_embeds, single_negative_image_embeds = self.encode_image( + single_ip_adapter_image, device, 1, output_hidden_state + ) + + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + + ip_adapter_image_embeds = [] + for i, single_image_embeds in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + + return ip_adapter_image_embeds + + # Copied from diffusers.pipelines.animatediff.pipeline_animatediff_video2video.AnimateDiffVideoToVideoPipeline.encode_video + def encode_video(self, video, generator, decode_chunk_size: int = 16) -> torch.Tensor: + latents = [] + for i in range(0, len(video), decode_chunk_size): + batch_video = video[i : i + decode_chunk_size] + batch_video = retrieve_latents(self.vae.encode(batch_video), generator=generator) + latents.append(batch_video) + return torch.cat(latents) + + # Copied from diffusers.pipelines.animatediff.pipeline_animatediff.AnimateDiffPipeline.decode_latents + def decode_latents(self, latents, decode_chunk_size: int = 16): + latents = 1 / self.vae.config.scaling_factor * latents + + batch_size, channels, num_frames, height, width = latents.shape + latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) + + video = [] + for i in range(0, latents.shape[0], decode_chunk_size): + batch_latents = latents[i : i + decode_chunk_size] + batch_latents = self.vae.decode(batch_latents).sample + video.append(batch_latents) + + video = torch.cat(video) + video = video[None, :].reshape((batch_size, num_frames, -1) + video.shape[2:]).permute(0, 2, 1, 3, 4) + # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 + video = video.float() + return video + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs + def prepare_extra_step_kwargs(self, generator, eta): + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 + # and should be between [0, 1] + + accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + # check if the scheduler accepts generator + accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs["generator"] = generator + return extra_step_kwargs + + def check_inputs( + self, + prompt, + strength, + height, + width, + video=None, + conditioning_frames=None, + latents=None, + negative_prompt=None, + prompt_embeds=None, + negative_prompt_embeds=None, + ip_adapter_image=None, + ip_adapter_image_embeds=None, + callback_on_step_end_tensor_inputs=None, + controlnet_conditioning_scale=1.0, + control_guidance_start=0.0, + control_guidance_end=1.0, + ): + if strength < 0 or strength > 1: + raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") + + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") + + if callback_on_step_end_tensor_inputs is not None and not all( + k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs + ): + raise ValueError( + f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and not isinstance(prompt, (str, list, dict)): + raise ValueError(f"`prompt` has to be of type `str`, `list` or `dict` but is {type(prompt)}") + + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError( + "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" + f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" + f" {negative_prompt_embeds.shape}." + ) + + if video is not None and latents is not None: + raise ValueError("Only one of `video` or `latents` should be provided") + + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError( + "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." + ) + + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError( + f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" + ) + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError( + f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" + ) + + if isinstance(self.controlnet, MultiControlNetModel): + if isinstance(prompt, list): + logger.warning( + f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}" + " prompts. The conditionings will be fixed across the prompts." + ) + is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( + self.controlnet, torch._dynamo.eval_frame.OptimizedModule + ) + + num_frames = len(video) if latents is None else latents.shape[2] + + if ( + isinstance(self.controlnet, ControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, ControlNetModel) + ): + if not isinstance(conditioning_frames, list): + raise TypeError( + f"For single controlnet, `image` must be of type `list` but got {type(conditioning_frames)}" + ) + if len(conditioning_frames) != num_frames: + raise ValueError(f"Excepted image to have length {num_frames} but got {len(conditioning_frames)=}") + elif ( + isinstance(self.controlnet, MultiControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, MultiControlNetModel) + ): + if not isinstance(conditioning_frames, list) or not isinstance(conditioning_frames[0], list): + raise TypeError( + f"For multiple controlnets: `image` must be type list of lists but got {type(conditioning_frames)=}" + ) + if len(conditioning_frames[0]) != num_frames: + raise ValueError( + f"Expected length of image sublist as {num_frames} but got {len(conditioning_frames)=}" + ) + if any(len(img) != len(conditioning_frames[0]) for img in conditioning_frames): + raise ValueError("All conditioning frame batches for multicontrolnet must be same size") + else: + assert False + + # Check `controlnet_conditioning_scale` + if ( + isinstance(self.controlnet, ControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, ControlNetModel) + ): + if not isinstance(controlnet_conditioning_scale, float): + raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") + elif ( + isinstance(self.controlnet, MultiControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, MultiControlNetModel) + ): + if isinstance(controlnet_conditioning_scale, list): + if any(isinstance(i, list) for i in controlnet_conditioning_scale): + raise ValueError("A single batch of multiple conditionings are supported at the moment.") + elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len( + self.controlnet.nets + ): + raise ValueError( + "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have" + " the same length as the number of controlnets" + ) + else: + assert False + + if not isinstance(control_guidance_start, (tuple, list)): + control_guidance_start = [control_guidance_start] + + if not isinstance(control_guidance_end, (tuple, list)): + control_guidance_end = [control_guidance_end] + + if len(control_guidance_start) != len(control_guidance_end): + raise ValueError( + f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." + ) + + if isinstance(self.controlnet, MultiControlNetModel): + if len(control_guidance_start) != len(self.controlnet.nets): + raise ValueError( + f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}." + ) + + for start, end in zip(control_guidance_start, control_guidance_end): + if start >= end: + raise ValueError( + f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." + ) + if start < 0.0: + raise ValueError(f"control guidance start: {start} can't be smaller than 0.") + if end > 1.0: + raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") + + # Copied from diffusers.pipelines.animatediff.pipeline_animatediff_video2video.AnimateDiffVideoToVideoPipeline.get_timesteps + def get_timesteps(self, num_inference_steps, timesteps, strength, device): + # get the original timestep using init_timestep + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = timesteps[t_start * self.scheduler.order :] + + return timesteps, num_inference_steps - t_start + + # Copied from diffusers.pipelines.animatediff.pipeline_animatediff_video2video.AnimateDiffVideoToVideoPipeline.prepare_latents + def prepare_latents( + self, + video: Optional[torch.Tensor] = None, + height: int = 64, + width: int = 64, + num_channels_latents: int = 4, + batch_size: int = 1, + timestep: Optional[int] = None, + dtype: Optional[torch.dtype] = None, + device: Optional[torch.device] = None, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.Tensor] = None, + decode_chunk_size: int = 16, + add_noise: bool = False, + ) -> torch.Tensor: + num_frames = video.shape[1] if latents is None else latents.shape[2] + shape = ( + batch_size, + num_channels_latents, + num_frames, + height // self.vae_scale_factor, + width // self.vae_scale_factor, + ) + + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + if latents is None: + # make sure the VAE is in float32 mode, as it overflows in float16 + if self.vae.config.force_upcast: + video = video.float() + self.vae.to(dtype=torch.float32) + + if isinstance(generator, list): + if len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + init_latents = [ + self.encode_video(video[i], generator[i], decode_chunk_size).unsqueeze(0) + for i in range(batch_size) + ] + else: + init_latents = [self.encode_video(vid, generator, decode_chunk_size).unsqueeze(0) for vid in video] + + init_latents = torch.cat(init_latents, dim=0) + + # restore vae to original dtype + if self.vae.config.force_upcast: + self.vae.to(dtype) + + init_latents = init_latents.to(dtype) + init_latents = self.vae.config.scaling_factor * init_latents + + if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: + # expand init_latents for batch_size + error_message = ( + f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial" + " images (`image`). Please make sure to update your script to pass as many initial images as text prompts" + ) + raise ValueError(error_message) + elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: + raise ValueError( + f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." + ) + else: + init_latents = torch.cat([init_latents], dim=0) + + noise = randn_tensor(init_latents.shape, generator=generator, device=device, dtype=dtype) + latents = self.scheduler.add_noise(init_latents, noise, timestep).permute(0, 2, 1, 3, 4) + else: + if shape != latents.shape: + # [B, C, F, H, W] + raise ValueError(f"`latents` expected to have {shape=}, but found {latents.shape=}") + + latents = latents.to(device, dtype=dtype) + + if add_noise: + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = self.scheduler.add_noise(latents, noise, timestep) + + return latents + + # Copied from diffusers.pipelines.animatediff.pipeline_animatediff_controlnet.AnimateDiffControlNetPipeline.prepare_video + def prepare_conditioning_frames( + self, + video, + width, + height, + batch_size, + num_videos_per_prompt, + device, + dtype, + do_classifier_free_guidance=False, + guess_mode=False, + ): + video = self.control_video_processor.preprocess_video(video, height=height, width=width).to( + dtype=torch.float32 + ) + video = video.permute(0, 2, 1, 3, 4).flatten(0, 1) + video_batch_size = video.shape[0] + + if video_batch_size == 1: + repeat_by = batch_size + else: + # image batch size is the same as prompt batch size + repeat_by = num_videos_per_prompt + + video = video.repeat_interleave(repeat_by, dim=0) + video = video.to(device=device, dtype=dtype) + + if do_classifier_free_guidance and not guess_mode: + video = torch.cat([video] * 2) + + return video + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + def __call__( + self, + video: List[List[PipelineImageInput]] = None, + prompt: Optional[Union[str, List[str]]] = None, + height: Optional[int] = None, + width: Optional[int] = None, + num_inference_steps: int = 50, + enforce_inference_steps: bool = False, + timesteps: Optional[List[int]] = None, + sigmas: Optional[List[float]] = None, + guidance_scale: float = 7.5, + strength: float = 0.8, + negative_prompt: Optional[Union[str, List[str]]] = None, + num_videos_per_prompt: Optional[int] = 1, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.Tensor] = None, + prompt_embeds: Optional[torch.Tensor] = None, + negative_prompt_embeds: Optional[torch.Tensor] = None, + ip_adapter_image: Optional[PipelineImageInput] = None, + ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, + conditioning_frames: Optional[List[PipelineImageInput]] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + controlnet_conditioning_scale: Union[float, List[float]] = 1.0, + guess_mode: bool = False, + control_guidance_start: Union[float, List[float]] = 0.0, + control_guidance_end: Union[float, List[float]] = 1.0, + clip_skip: Optional[int] = None, + callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, + callback_on_step_end_tensor_inputs: List[str] = ["latents"], + decode_chunk_size: int = 16, + ): + r""" + The call function to the pipeline for generation. + + Args: + video (`List[PipelineImageInput]`): + The input video to condition the generation on. Must be a list of images/frames of the video. + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. + height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): + The height in pixels of the generated video. + width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): + The width in pixels of the generated video. + num_inference_steps (`int`, *optional*, defaults to 50): + The number of denoising steps. More denoising steps usually lead to a higher quality videos at the + expense of slower inference. + timesteps (`List[int]`, *optional*): + Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument + in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is + passed will be used. Must be in descending order. + sigmas (`List[float]`, *optional*): + Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in + their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed + will be used. + strength (`float`, *optional*, defaults to 0.8): + Higher strength leads to more differences between original video and generated video. + guidance_scale (`float`, *optional*, defaults to 7.5): + A higher guidance scale value encourages the model to generate images closely linked to the text + `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide what to not include in image generation. If not defined, you need to + pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). + eta (`float`, *optional*, defaults to 0.0): + Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies + to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make + generation deterministic. + latents (`torch.Tensor`, *optional*): + Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor is generated by sampling using the supplied random `generator`. Latents should be of shape + `(batch_size, num_channel, num_frames, height, width)`. + prompt_embeds (`torch.Tensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not + provided, text embeddings are generated from the `prompt` input argument. + negative_prompt_embeds (`torch.Tensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If + not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. + ip_adapter_image: (`PipelineImageInput`, *optional*): + Optional image input to work with IP Adapters. + ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): + Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of + IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should + contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not + provided, embeddings are computed from the `ip_adapter_image` input argument. + conditioning_frames (`List[PipelineImageInput]`, *optional*): + The ControlNet input condition to provide guidance to the `unet` for generation. If multiple + ControlNets are specified, images must be passed as a list such that each element of the list can be + correctly batched for input to a single ControlNet. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generated video. Choose between `torch.Tensor`, `PIL.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`AnimateDiffPipelineOutput`] instead of a plain tuple. + cross_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in + [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): + The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added + to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set + the corresponding scale as a list. + guess_mode (`bool`, *optional*, defaults to `False`): + The ControlNet encoder tries to recognize the content of the input image even if you remove all + prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended. + control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): + The percentage of total steps at which the ControlNet starts applying. + control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): + The percentage of total steps at which the ControlNet stops applying. + clip_skip (`int`, *optional*): + Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that + the output of the pre-final layer will be used for computing the prompt embeddings. + callback_on_step_end (`Callable`, *optional*): + A function that calls at the end of each denoising steps during the inference. The function is called + with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, + callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by + `callback_on_step_end_tensor_inputs`. + callback_on_step_end_tensor_inputs (`List`, *optional*): + The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list + will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the + `._callback_tensor_inputs` attribute of your pipeline class. + decode_chunk_size (`int`, defaults to `16`): + The number of frames to decode at a time when calling `decode_latents` method. + + Examples: + + Returns: + [`pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] or `tuple`: + If `return_dict` is `True`, [`pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] is + returned, otherwise a `tuple` is returned where the first element is a list with the generated frames. + """ + + controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet + + # align format for control guidance + if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): + control_guidance_start = len(control_guidance_end) * [control_guidance_start] + elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): + control_guidance_end = len(control_guidance_start) * [control_guidance_end] + elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): + mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 + control_guidance_start, control_guidance_end = ( + mult * [control_guidance_start], + mult * [control_guidance_end], + ) + + # 0. Default height and width to unet + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + + num_videos_per_prompt = 1 + + # 1. Check inputs. Raise error if not correct + self.check_inputs( + prompt=prompt, + strength=strength, + height=height, + width=width, + negative_prompt=negative_prompt, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + video=video, + conditioning_frames=conditioning_frames, + latents=latents, + ip_adapter_image=ip_adapter_image, + ip_adapter_image_embeds=ip_adapter_image_embeds, + callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, + controlnet_conditioning_scale=controlnet_conditioning_scale, + control_guidance_start=control_guidance_start, + control_guidance_end=control_guidance_end, + ) + + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._interrupt = False + + # 2. Define call parameters + if prompt is not None and isinstance(prompt, (str, dict)): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + dtype = self.dtype + + # 3. Prepare timesteps + if not enforce_inference_steps: + timesteps, num_inference_steps = retrieve_timesteps( + self.scheduler, num_inference_steps, device, timesteps, sigmas + ) + timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, timesteps, strength, device) + latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt) + else: + denoising_inference_steps = int(num_inference_steps / strength) + timesteps, denoising_inference_steps = retrieve_timesteps( + self.scheduler, denoising_inference_steps, device, timesteps, sigmas + ) + timesteps = timesteps[-num_inference_steps:] + latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt) + + # 4. Prepare latent variables + if latents is None: + video = self.video_processor.preprocess_video(video, height=height, width=width) + # Move the number of frames before the number of channels. + video = video.permute(0, 2, 1, 3, 4) + video = video.to(device=device, dtype=dtype) + + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents( + video=video, + height=height, + width=width, + num_channels_latents=num_channels_latents, + batch_size=batch_size * num_videos_per_prompt, + timestep=latent_timestep, + dtype=dtype, + device=device, + generator=generator, + latents=latents, + decode_chunk_size=decode_chunk_size, + add_noise=enforce_inference_steps, + ) + + # 5. Encode input prompt + text_encoder_lora_scale = ( + self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None + ) + num_frames = latents.shape[2] + if self.free_noise_enabled: + prompt_embeds, negative_prompt_embeds = self._encode_prompt_free_noise( + prompt=prompt, + num_frames=num_frames, + device=device, + num_videos_per_prompt=num_videos_per_prompt, + do_classifier_free_guidance=self.do_classifier_free_guidance, + negative_prompt=negative_prompt, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + lora_scale=text_encoder_lora_scale, + clip_skip=self.clip_skip, + ) + else: + prompt_embeds, negative_prompt_embeds = self.encode_prompt( + prompt, + device, + num_videos_per_prompt, + self.do_classifier_free_guidance, + negative_prompt, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + lora_scale=text_encoder_lora_scale, + clip_skip=self.clip_skip, + ) + + # For classifier free guidance, we need to do two forward passes. + # Here we concatenate the unconditional and text embeddings into a single batch + # to avoid doing two forward passes + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + + prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0) + + # 6. Prepare IP-Adapter embeddings + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds( + ip_adapter_image, + ip_adapter_image_embeds, + device, + batch_size * num_videos_per_prompt, + self.do_classifier_free_guidance, + ) + + # 7. Prepare ControlNet conditions + if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): + controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) + + global_pool_conditions = ( + controlnet.config.global_pool_conditions + if isinstance(controlnet, ControlNetModel) + else controlnet.nets[0].config.global_pool_conditions + ) + guess_mode = guess_mode or global_pool_conditions + + controlnet_keep = [] + for i in range(len(timesteps)): + keeps = [ + 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) + for s, e in zip(control_guidance_start, control_guidance_end) + ] + controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) + + if isinstance(controlnet, ControlNetModel): + conditioning_frames = self.prepare_conditioning_frames( + video=conditioning_frames, + width=width, + height=height, + batch_size=batch_size * num_videos_per_prompt * num_frames, + num_videos_per_prompt=num_videos_per_prompt, + device=device, + dtype=controlnet.dtype, + do_classifier_free_guidance=self.do_classifier_free_guidance, + guess_mode=guess_mode, + ) + elif isinstance(controlnet, MultiControlNetModel): + cond_prepared_videos = [] + for frame_ in conditioning_frames: + prepared_video = self.prepare_conditioning_frames( + video=frame_, + width=width, + height=height, + batch_size=batch_size * num_videos_per_prompt * num_frames, + num_videos_per_prompt=num_videos_per_prompt, + device=device, + dtype=controlnet.dtype, + do_classifier_free_guidance=self.do_classifier_free_guidance, + guess_mode=guess_mode, + ) + cond_prepared_videos.append(prepared_video) + conditioning_frames = cond_prepared_videos + else: + assert False + + # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # 9. Add image embeds for IP-Adapter + added_cond_kwargs = ( + {"image_embeds": image_embeds} + if ip_adapter_image is not None or ip_adapter_image_embeds is not None + else None + ) + + num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1 + for free_init_iter in range(num_free_init_iters): + if self.free_init_enabled: + latents, timesteps = self._apply_free_init( + latents, free_init_iter, num_inference_steps, device, latents.dtype, generator + ) + num_inference_steps = len(timesteps) + # make sure to readjust timesteps based on strength + timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, timesteps, strength, device) + + self._num_timesteps = len(timesteps) + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + + # 10. Denoising loop + with self.progress_bar(total=self._num_timesteps) as progress_bar: + for i, t in enumerate(timesteps): + if self.interrupt: + continue + + # expand the latents if we are doing classifier free guidance + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + + if guess_mode and self.do_classifier_free_guidance: + # Infer ControlNet only for the conditional batch. + control_model_input = latents + control_model_input = self.scheduler.scale_model_input(control_model_input, t) + controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] + else: + control_model_input = latent_model_input + controlnet_prompt_embeds = prompt_embeds + + if isinstance(controlnet_keep[i], list): + cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] + else: + controlnet_cond_scale = controlnet_conditioning_scale + if isinstance(controlnet_cond_scale, list): + controlnet_cond_scale = controlnet_cond_scale[0] + cond_scale = controlnet_cond_scale * controlnet_keep[i] + + control_model_input = torch.transpose(control_model_input, 1, 2) + control_model_input = control_model_input.reshape( + (-1, control_model_input.shape[2], control_model_input.shape[3], control_model_input.shape[4]) + ) + + down_block_res_samples, mid_block_res_sample = self.controlnet( + control_model_input, + t, + encoder_hidden_states=controlnet_prompt_embeds, + controlnet_cond=conditioning_frames, + conditioning_scale=cond_scale, + guess_mode=guess_mode, + return_dict=False, + ) + + # predict the noise residual + noise_pred = self.unet( + latent_model_input, + t, + encoder_hidden_states=prompt_embeds, + cross_attention_kwargs=self.cross_attention_kwargs, + added_cond_kwargs=added_cond_kwargs, + down_block_additional_residuals=down_block_res_samples, + mid_block_additional_residual=mid_block_res_sample, + ).sample + + # perform guidance + if self.do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + + # compute the previous noisy sample x_t -> x_t-1 + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample + + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + + latents = callback_outputs.pop("latents", latents) + prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) + negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + + # 11. Post-processing + if output_type == "latent": + video = latents + else: + video_tensor = self.decode_latents(latents, decode_chunk_size) + video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type) + + # 12. Offload all models + self.maybe_free_model_hooks() + + if not return_dict: + return (video,) + + return AnimateDiffPipelineOutput(frames=video) diff --git a/src/diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py b/src/diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py index 017c1a6f74..17fd2cb6c8 100644 --- a/src/diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +++ b/src/diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py @@ -1024,14 +1024,16 @@ class StableDiffusionXLControlNetInpaintPipeline( if denoising_start is None: init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) + + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] + if hasattr(self.scheduler, "set_begin_index"): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + + return timesteps, num_inference_steps - t_start + else: - t_start = 0 - - timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] - - # Strength is irrelevant if we directly request a timestep to start at; - # that is, strength is determined by the denoising_start instead. - if denoising_start is not None: + # Strength is irrelevant if we directly request a timestep to start at; + # that is, strength is determined by the denoising_start instead. discrete_timestep_cutoff = int( round( self.scheduler.config.num_train_timesteps @@ -1039,7 +1041,7 @@ class StableDiffusionXLControlNetInpaintPipeline( ) ) - num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item() + num_inference_steps = (self.scheduler.timesteps < discrete_timestep_cutoff).sum().item() if self.scheduler.order == 2 and num_inference_steps % 2 == 0: # if the scheduler is a 2nd order scheduler we might have to do +1 # because `num_inference_steps` might be even given that every timestep @@ -1050,11 +1052,12 @@ class StableDiffusionXLControlNetInpaintPipeline( num_inference_steps = num_inference_steps + 1 # because t_n+1 >= t_n, we slice the timesteps starting from the end - timesteps = timesteps[-num_inference_steps:] + t_start = len(self.scheduler.timesteps) - num_inference_steps + timesteps = self.scheduler.timesteps[t_start:] + if hasattr(self.scheduler, "set_begin_index"): + self.scheduler.set_begin_index(t_start) return timesteps, num_inference_steps - return timesteps, num_inference_steps - t_start - def _get_add_time_ids( self, original_size, diff --git a/src/diffusers/pipelines/kolors/pipeline_kolors_img2img.py b/src/diffusers/pipelines/kolors/pipeline_kolors_img2img.py index 81abdff0e9..4985a80f88 100644 --- a/src/diffusers/pipelines/kolors/pipeline_kolors_img2img.py +++ b/src/diffusers/pipelines/kolors/pipeline_kolors_img2img.py @@ -564,14 +564,16 @@ class KolorsImg2ImgPipeline(DiffusionPipeline, StableDiffusionMixin, StableDiffu if denoising_start is None: init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) + + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] + if hasattr(self.scheduler, "set_begin_index"): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + + return timesteps, num_inference_steps - t_start + else: - t_start = 0 - - timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] - - # Strength is irrelevant if we directly request a timestep to start at; - # that is, strength is determined by the denoising_start instead. - if denoising_start is not None: + # Strength is irrelevant if we directly request a timestep to start at; + # that is, strength is determined by the denoising_start instead. discrete_timestep_cutoff = int( round( self.scheduler.config.num_train_timesteps @@ -579,7 +581,7 @@ class KolorsImg2ImgPipeline(DiffusionPipeline, StableDiffusionMixin, StableDiffu ) ) - num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item() + num_inference_steps = (self.scheduler.timesteps < discrete_timestep_cutoff).sum().item() if self.scheduler.order == 2 and num_inference_steps % 2 == 0: # if the scheduler is a 2nd order scheduler we might have to do +1 # because `num_inference_steps` might be even given that every timestep @@ -590,11 +592,12 @@ class KolorsImg2ImgPipeline(DiffusionPipeline, StableDiffusionMixin, StableDiffu num_inference_steps = num_inference_steps + 1 # because t_n+1 >= t_n, we slice the timesteps starting from the end - timesteps = timesteps[-num_inference_steps:] + t_start = len(self.scheduler.timesteps) - num_inference_steps + timesteps = self.scheduler.timesteps[t_start:] + if hasattr(self.scheduler, "set_begin_index"): + self.scheduler.set_begin_index(t_start) return timesteps, num_inference_steps - return timesteps, num_inference_steps - t_start - # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.prepare_latents def prepare_latents( self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True diff --git a/src/diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py b/src/diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py index 2ce81f6765..dc85aaaca3 100644 --- a/src/diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +++ b/src/diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py @@ -648,14 +648,16 @@ class StableDiffusionXLPAGImg2ImgPipeline( if denoising_start is None: init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) + + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] + if hasattr(self.scheduler, "set_begin_index"): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + + return timesteps, num_inference_steps - t_start + else: - t_start = 0 - - timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] - - # Strength is irrelevant if we directly request a timestep to start at; - # that is, strength is determined by the denoising_start instead. - if denoising_start is not None: + # Strength is irrelevant if we directly request a timestep to start at; + # that is, strength is determined by the denoising_start instead. discrete_timestep_cutoff = int( round( self.scheduler.config.num_train_timesteps @@ -663,7 +665,7 @@ class StableDiffusionXLPAGImg2ImgPipeline( ) ) - num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item() + num_inference_steps = (self.scheduler.timesteps < discrete_timestep_cutoff).sum().item() if self.scheduler.order == 2 and num_inference_steps % 2 == 0: # if the scheduler is a 2nd order scheduler we might have to do +1 # because `num_inference_steps` might be even given that every timestep @@ -674,11 +676,12 @@ class StableDiffusionXLPAGImg2ImgPipeline( num_inference_steps = num_inference_steps + 1 # because t_n+1 >= t_n, we slice the timesteps starting from the end - timesteps = timesteps[-num_inference_steps:] + t_start = len(self.scheduler.timesteps) - num_inference_steps + timesteps = self.scheduler.timesteps[t_start:] + if hasattr(self.scheduler, "set_begin_index"): + self.scheduler.set_begin_index(t_start) return timesteps, num_inference_steps - return timesteps, num_inference_steps - t_start - # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.prepare_latents def prepare_latents( self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True diff --git a/src/diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py b/src/diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py index 09c3a7029c..f5ebf43009 100644 --- a/src/diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +++ b/src/diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py @@ -897,14 +897,16 @@ class StableDiffusionXLPAGInpaintPipeline( if denoising_start is None: init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) + + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] + if hasattr(self.scheduler, "set_begin_index"): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + + return timesteps, num_inference_steps - t_start + else: - t_start = 0 - - timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] - - # Strength is irrelevant if we directly request a timestep to start at; - # that is, strength is determined by the denoising_start instead. - if denoising_start is not None: + # Strength is irrelevant if we directly request a timestep to start at; + # that is, strength is determined by the denoising_start instead. discrete_timestep_cutoff = int( round( self.scheduler.config.num_train_timesteps @@ -912,7 +914,7 @@ class StableDiffusionXLPAGInpaintPipeline( ) ) - num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item() + num_inference_steps = (self.scheduler.timesteps < discrete_timestep_cutoff).sum().item() if self.scheduler.order == 2 and num_inference_steps % 2 == 0: # if the scheduler is a 2nd order scheduler we might have to do +1 # because `num_inference_steps` might be even given that every timestep @@ -923,11 +925,12 @@ class StableDiffusionXLPAGInpaintPipeline( num_inference_steps = num_inference_steps + 1 # because t_n+1 >= t_n, we slice the timesteps starting from the end - timesteps = timesteps[-num_inference_steps:] + t_start = len(self.scheduler.timesteps) - num_inference_steps + timesteps = self.scheduler.timesteps[t_start:] + if hasattr(self.scheduler, "set_begin_index"): + self.scheduler.set_begin_index(t_start) return timesteps, num_inference_steps - return timesteps, num_inference_steps - t_start - # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline._get_add_time_ids def _get_add_time_ids( self, diff --git a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py index ebabfe26aa..29b5e11875 100644 --- a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +++ b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py @@ -640,14 +640,16 @@ class StableDiffusionXLImg2ImgPipeline( if denoising_start is None: init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) + + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] + if hasattr(self.scheduler, "set_begin_index"): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + + return timesteps, num_inference_steps - t_start + else: - t_start = 0 - - timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] - - # Strength is irrelevant if we directly request a timestep to start at; - # that is, strength is determined by the denoising_start instead. - if denoising_start is not None: + # Strength is irrelevant if we directly request a timestep to start at; + # that is, strength is determined by the denoising_start instead. discrete_timestep_cutoff = int( round( self.scheduler.config.num_train_timesteps @@ -655,7 +657,7 @@ class StableDiffusionXLImg2ImgPipeline( ) ) - num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item() + num_inference_steps = (self.scheduler.timesteps < discrete_timestep_cutoff).sum().item() if self.scheduler.order == 2 and num_inference_steps % 2 == 0: # if the scheduler is a 2nd order scheduler we might have to do +1 # because `num_inference_steps` might be even given that every timestep @@ -666,11 +668,12 @@ class StableDiffusionXLImg2ImgPipeline( num_inference_steps = num_inference_steps + 1 # because t_n+1 >= t_n, we slice the timesteps starting from the end - timesteps = timesteps[-num_inference_steps:] + t_start = len(self.scheduler.timesteps) - num_inference_steps + timesteps = self.scheduler.timesteps[t_start:] + if hasattr(self.scheduler, "set_begin_index"): + self.scheduler.set_begin_index(t_start) return timesteps, num_inference_steps - return timesteps, num_inference_steps - t_start - def prepare_latents( self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True ): diff --git a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py index 739f0c5c00..d28a9afbfb 100644 --- a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +++ b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py @@ -901,14 +901,16 @@ class StableDiffusionXLInpaintPipeline( if denoising_start is None: init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) + + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] + if hasattr(self.scheduler, "set_begin_index"): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + + return timesteps, num_inference_steps - t_start + else: - t_start = 0 - - timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] - - # Strength is irrelevant if we directly request a timestep to start at; - # that is, strength is determined by the denoising_start instead. - if denoising_start is not None: + # Strength is irrelevant if we directly request a timestep to start at; + # that is, strength is determined by the denoising_start instead. discrete_timestep_cutoff = int( round( self.scheduler.config.num_train_timesteps @@ -916,7 +918,7 @@ class StableDiffusionXLInpaintPipeline( ) ) - num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item() + num_inference_steps = (self.scheduler.timesteps < discrete_timestep_cutoff).sum().item() if self.scheduler.order == 2 and num_inference_steps % 2 == 0: # if the scheduler is a 2nd order scheduler we might have to do +1 # because `num_inference_steps` might be even given that every timestep @@ -927,11 +929,12 @@ class StableDiffusionXLInpaintPipeline( num_inference_steps = num_inference_steps + 1 # because t_n+1 >= t_n, we slice the timesteps starting from the end - timesteps = timesteps[-num_inference_steps:] + t_start = len(self.scheduler.timesteps) - num_inference_steps + timesteps = self.scheduler.timesteps[t_start:] + if hasattr(self.scheduler, "set_begin_index"): + self.scheduler.set_begin_index(t_start) return timesteps, num_inference_steps - return timesteps, num_inference_steps - t_start - # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline._get_add_time_ids def _get_add_time_ids( self, diff --git a/src/diffusers/utils/dummy_torch_and_transformers_objects.py b/src/diffusers/utils/dummy_torch_and_transformers_objects.py index ff1f38d731..7324887215 100644 --- a/src/diffusers/utils/dummy_torch_and_transformers_objects.py +++ b/src/diffusers/utils/dummy_torch_and_transformers_objects.py @@ -152,6 +152,21 @@ class AnimateDiffSparseControlNetPipeline(metaclass=DummyObject): requires_backends(cls, ["torch", "transformers"]) +class AnimateDiffVideoToVideoControlNetPipeline(metaclass=DummyObject): + _backends = ["torch", "transformers"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch", "transformers"]) + + @classmethod + def from_config(cls, *args, **kwargs): + requires_backends(cls, ["torch", "transformers"]) + + @classmethod + def from_pretrained(cls, *args, **kwargs): + requires_backends(cls, ["torch", "transformers"]) + + class AnimateDiffVideoToVideoPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] diff --git a/tests/pipelines/animatediff/test_animatediff_video2video_controlnet.py b/tests/pipelines/animatediff/test_animatediff_video2video_controlnet.py new file mode 100644 index 0000000000..5e598e67ec --- /dev/null +++ b/tests/pipelines/animatediff/test_animatediff_video2video_controlnet.py @@ -0,0 +1,535 @@ +import unittest + +import numpy as np +import torch +from PIL import Image +from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer + +import diffusers +from diffusers import ( + AnimateDiffVideoToVideoControlNetPipeline, + AutoencoderKL, + ControlNetModel, + DDIMScheduler, + DPMSolverMultistepScheduler, + LCMScheduler, + MotionAdapter, + StableDiffusionPipeline, + UNet2DConditionModel, + UNetMotionModel, +) +from diffusers.models.attention import FreeNoiseTransformerBlock +from diffusers.utils import is_xformers_available, logging +from diffusers.utils.testing_utils import torch_device + +from ..pipeline_params import TEXT_TO_IMAGE_PARAMS, VIDEO_TO_VIDEO_BATCH_PARAMS +from ..test_pipelines_common import IPAdapterTesterMixin, PipelineFromPipeTesterMixin, PipelineTesterMixin + + +def to_np(tensor): + if isinstance(tensor, torch.Tensor): + tensor = tensor.detach().cpu().numpy() + + return tensor + + +class AnimateDiffVideoToVideoControlNetPipelineFastTests( + IPAdapterTesterMixin, PipelineTesterMixin, PipelineFromPipeTesterMixin, unittest.TestCase +): + pipeline_class = AnimateDiffVideoToVideoControlNetPipeline + params = TEXT_TO_IMAGE_PARAMS + batch_params = VIDEO_TO_VIDEO_BATCH_PARAMS.union({"conditioning_frames"}) + required_optional_params = frozenset( + [ + "num_inference_steps", + "generator", + "latents", + "return_dict", + "callback_on_step_end", + "callback_on_step_end_tensor_inputs", + ] + ) + + def get_dummy_components(self): + cross_attention_dim = 8 + block_out_channels = (8, 8) + + torch.manual_seed(0) + unet = UNet2DConditionModel( + block_out_channels=block_out_channels, + layers_per_block=2, + sample_size=8, + in_channels=4, + out_channels=4, + down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), + up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), + cross_attention_dim=cross_attention_dim, + norm_num_groups=2, + ) + scheduler = DDIMScheduler( + beta_start=0.00085, + beta_end=0.012, + beta_schedule="linear", + clip_sample=False, + ) + torch.manual_seed(0) + controlnet = ControlNetModel( + block_out_channels=block_out_channels, + layers_per_block=2, + in_channels=4, + down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), + cross_attention_dim=cross_attention_dim, + conditioning_embedding_out_channels=(8, 8), + norm_num_groups=1, + ) + torch.manual_seed(0) + vae = AutoencoderKL( + block_out_channels=block_out_channels, + in_channels=3, + out_channels=3, + down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], + up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], + latent_channels=4, + norm_num_groups=2, + ) + torch.manual_seed(0) + text_encoder_config = CLIPTextConfig( + bos_token_id=0, + eos_token_id=2, + hidden_size=cross_attention_dim, + intermediate_size=37, + layer_norm_eps=1e-05, + num_attention_heads=4, + num_hidden_layers=5, + pad_token_id=1, + vocab_size=1000, + ) + text_encoder = CLIPTextModel(text_encoder_config) + tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") + torch.manual_seed(0) + motion_adapter = MotionAdapter( + block_out_channels=block_out_channels, + motion_layers_per_block=2, + motion_norm_num_groups=2, + motion_num_attention_heads=4, + ) + + components = { + "unet": unet, + "controlnet": controlnet, + "scheduler": scheduler, + "vae": vae, + "motion_adapter": motion_adapter, + "text_encoder": text_encoder, + "tokenizer": tokenizer, + "feature_extractor": None, + "image_encoder": None, + } + return components + + def get_dummy_inputs(self, device, seed=0, num_frames: int = 2): + if str(device).startswith("mps"): + generator = torch.manual_seed(seed) + else: + generator = torch.Generator(device=device).manual_seed(seed) + + video_height = 32 + video_width = 32 + video = [Image.new("RGB", (video_width, video_height))] * num_frames + + video_height = 32 + video_width = 32 + conditioning_frames = [Image.new("RGB", (video_width, video_height))] * num_frames + + inputs = { + "video": video, + "conditioning_frames": conditioning_frames, + "prompt": "A painting of a squirrel eating a burger", + "generator": generator, + "num_inference_steps": 2, + "guidance_scale": 7.5, + "output_type": "pt", + } + return inputs + + def test_from_pipe_consistent_config(self): + assert self.original_pipeline_class == StableDiffusionPipeline + original_repo = "hf-internal-testing/tinier-stable-diffusion-pipe" + original_kwargs = {"requires_safety_checker": False} + + # create original_pipeline_class(sd) + pipe_original = self.original_pipeline_class.from_pretrained(original_repo, **original_kwargs) + + # original_pipeline_class(sd) -> pipeline_class + pipe_components = self.get_dummy_components() + pipe_additional_components = {} + for name, component in pipe_components.items(): + if name not in pipe_original.components: + pipe_additional_components[name] = component + + pipe = self.pipeline_class.from_pipe(pipe_original, **pipe_additional_components) + + # pipeline_class -> original_pipeline_class(sd) + original_pipe_additional_components = {} + for name, component in pipe_original.components.items(): + if name not in pipe.components or not isinstance(component, pipe.components[name].__class__): + original_pipe_additional_components[name] = component + + pipe_original_2 = self.original_pipeline_class.from_pipe(pipe, **original_pipe_additional_components) + + # compare the config + original_config = {k: v for k, v in pipe_original.config.items() if not k.startswith("_")} + original_config_2 = {k: v for k, v in pipe_original_2.config.items() if not k.startswith("_")} + assert original_config_2 == original_config + + def test_motion_unet_loading(self): + components = self.get_dummy_components() + pipe = AnimateDiffVideoToVideoControlNetPipeline(**components) + + assert isinstance(pipe.unet, UNetMotionModel) + + @unittest.skip("Attention slicing is not enabled in this pipeline") + def test_attention_slicing_forward_pass(self): + pass + + def test_ip_adapter(self): + expected_pipe_slice = None + if torch_device == "cpu": + expected_pipe_slice = np.array( + [ + 0.5569, + 0.6250, + 0.4144, + 0.5613, + 0.5563, + 0.5213, + 0.5091, + 0.4950, + 0.4950, + 0.5684, + 0.3858, + 0.4863, + 0.6457, + 0.4311, + 0.5517, + 0.5608, + 0.4417, + 0.5377, + ] + ) + return super().test_ip_adapter(expected_pipe_slice=expected_pipe_slice) + + def test_inference_batch_single_identical( + self, + batch_size=2, + expected_max_diff=1e-4, + additional_params_copy_to_batched_inputs=["num_inference_steps"], + ): + components = self.get_dummy_components() + pipe = self.pipeline_class(**components) + for components in pipe.components.values(): + if hasattr(components, "set_default_attn_processor"): + components.set_default_attn_processor() + + pipe.to(torch_device) + pipe.set_progress_bar_config(disable=None) + inputs = self.get_dummy_inputs(torch_device) + # Reset generator in case it is has been used in self.get_dummy_inputs + inputs["generator"] = self.get_generator(0) + + logger = logging.get_logger(pipe.__module__) + logger.setLevel(level=diffusers.logging.FATAL) + + # batchify inputs + batched_inputs = {} + batched_inputs.update(inputs) + + for name in self.batch_params: + if name not in inputs: + continue + + value = inputs[name] + if name == "prompt": + len_prompt = len(value) + batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] + batched_inputs[name][-1] = 100 * "very long" + + else: + batched_inputs[name] = batch_size * [value] + + if "generator" in inputs: + batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)] + + if "batch_size" in inputs: + batched_inputs["batch_size"] = batch_size + + for arg in additional_params_copy_to_batched_inputs: + batched_inputs[arg] = inputs[arg] + + output = pipe(**inputs) + output_batch = pipe(**batched_inputs) + + assert output_batch[0].shape[0] == batch_size + + max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max() + assert max_diff < expected_max_diff + + @unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices") + def test_to_device(self): + components = self.get_dummy_components() + pipe = self.pipeline_class(**components) + pipe.set_progress_bar_config(disable=None) + + pipe.to("cpu") + # pipeline creates a new motion UNet under the hood. So we need to check the device from pipe.components + model_devices = [ + component.device.type for component in pipe.components.values() if hasattr(component, "device") + ] + self.assertTrue(all(device == "cpu" for device in model_devices)) + + output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0] + self.assertTrue(np.isnan(output_cpu).sum() == 0) + + pipe.to("cuda") + model_devices = [ + component.device.type for component in pipe.components.values() if hasattr(component, "device") + ] + self.assertTrue(all(device == "cuda" for device in model_devices)) + + output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0] + self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0) + + def test_to_dtype(self): + components = self.get_dummy_components() + pipe = self.pipeline_class(**components) + pipe.set_progress_bar_config(disable=None) + + # pipeline creates a new motion UNet under the hood. So we need to check the dtype from pipe.components + model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")] + self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes)) + + pipe.to(dtype=torch.float16) + model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")] + self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes)) + + def test_prompt_embeds(self): + components = self.get_dummy_components() + pipe = self.pipeline_class(**components) + pipe.set_progress_bar_config(disable=None) + pipe.to(torch_device) + + inputs = self.get_dummy_inputs(torch_device) + inputs.pop("prompt") + inputs["prompt_embeds"] = torch.randn((1, 4, pipe.text_encoder.config.hidden_size), device=torch_device) + pipe(**inputs) + + def test_latent_inputs(self): + components = self.get_dummy_components() + pipe = self.pipeline_class(**components) + pipe.set_progress_bar_config(disable=None) + pipe.to(torch_device) + + inputs = self.get_dummy_inputs(torch_device) + sample_size = pipe.unet.config.sample_size + num_frames = len(inputs["conditioning_frames"]) + inputs["latents"] = torch.randn((1, 4, num_frames, sample_size, sample_size), device=torch_device) + inputs.pop("video") + pipe(**inputs) + + @unittest.skipIf( + torch_device != "cuda" or not is_xformers_available(), + reason="XFormers attention is only available with CUDA and `xformers` installed", + ) + def test_xformers_attention_forwardGenerator_pass(self): + components = self.get_dummy_components() + pipe = self.pipeline_class(**components) + for component in pipe.components.values(): + if hasattr(component, "set_default_attn_processor"): + component.set_default_attn_processor() + pipe.to(torch_device) + pipe.set_progress_bar_config(disable=None) + + inputs = self.get_dummy_inputs(torch_device) + output_without_offload = pipe(**inputs).frames[0] + output_without_offload = ( + output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload + ) + + pipe.enable_xformers_memory_efficient_attention() + inputs = self.get_dummy_inputs(torch_device) + output_with_offload = pipe(**inputs).frames[0] + output_with_offload = ( + output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload + ) + + max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max() + self.assertLess(max_diff, 1e-4, "XFormers attention should not affect the inference results") + + def test_free_init(self): + components = self.get_dummy_components() + pipe: AnimateDiffVideoToVideoControlNetPipeline = self.pipeline_class(**components) + pipe.set_progress_bar_config(disable=None) + pipe.to(torch_device) + + inputs_normal = self.get_dummy_inputs(torch_device) + frames_normal = pipe(**inputs_normal).frames[0] + + pipe.enable_free_init( + num_iters=2, + use_fast_sampling=True, + method="butterworth", + order=4, + spatial_stop_frequency=0.25, + temporal_stop_frequency=0.25, + ) + inputs_enable_free_init = self.get_dummy_inputs(torch_device) + frames_enable_free_init = pipe(**inputs_enable_free_init).frames[0] + + pipe.disable_free_init() + inputs_disable_free_init = self.get_dummy_inputs(torch_device) + frames_disable_free_init = pipe(**inputs_disable_free_init).frames[0] + + sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_init)).sum() + max_diff_disabled = np.abs(to_np(frames_normal) - to_np(frames_disable_free_init)).max() + self.assertGreater( + sum_enabled, 1e1, "Enabling of FreeInit should lead to results different from the default pipeline results" + ) + self.assertLess( + max_diff_disabled, + 1e-4, + "Disabling of FreeInit should lead to results similar to the default pipeline results", + ) + + def test_free_init_with_schedulers(self): + components = self.get_dummy_components() + pipe: AnimateDiffVideoToVideoControlNetPipeline = self.pipeline_class(**components) + pipe.set_progress_bar_config(disable=None) + pipe.to(torch_device) + + inputs_normal = self.get_dummy_inputs(torch_device) + frames_normal = pipe(**inputs_normal).frames[0] + + schedulers_to_test = [ + DPMSolverMultistepScheduler.from_config( + components["scheduler"].config, + timestep_spacing="linspace", + beta_schedule="linear", + algorithm_type="dpmsolver++", + steps_offset=1, + clip_sample=False, + ), + LCMScheduler.from_config( + components["scheduler"].config, + timestep_spacing="linspace", + beta_schedule="linear", + steps_offset=1, + clip_sample=False, + ), + ] + components.pop("scheduler") + + for scheduler in schedulers_to_test: + components["scheduler"] = scheduler + pipe: AnimateDiffVideoToVideoControlNetPipeline = self.pipeline_class(**components) + pipe.set_progress_bar_config(disable=None) + pipe.to(torch_device) + + pipe.enable_free_init(num_iters=2, use_fast_sampling=False) + + inputs = self.get_dummy_inputs(torch_device) + frames_enable_free_init = pipe(**inputs).frames[0] + sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_init)).sum() + + self.assertGreater( + sum_enabled, + 1e1, + "Enabling of FreeInit should lead to results different from the default pipeline results", + ) + + def test_free_noise_blocks(self): + components = self.get_dummy_components() + pipe: AnimateDiffVideoToVideoControlNetPipeline = self.pipeline_class(**components) + pipe.set_progress_bar_config(disable=None) + pipe.to(torch_device) + + pipe.enable_free_noise() + for block in pipe.unet.down_blocks: + for motion_module in block.motion_modules: + for transformer_block in motion_module.transformer_blocks: + self.assertTrue( + isinstance(transformer_block, FreeNoiseTransformerBlock), + "Motion module transformer blocks must be an instance of `FreeNoiseTransformerBlock` after enabling FreeNoise.", + ) + + pipe.disable_free_noise() + for block in pipe.unet.down_blocks: + for motion_module in block.motion_modules: + for transformer_block in motion_module.transformer_blocks: + self.assertFalse( + isinstance(transformer_block, FreeNoiseTransformerBlock), + "Motion module transformer blocks must not be an instance of `FreeNoiseTransformerBlock` after disabling FreeNoise.", + ) + + def test_free_noise(self): + components = self.get_dummy_components() + pipe: AnimateDiffVideoToVideoControlNetPipeline = self.pipeline_class(**components) + pipe.set_progress_bar_config(disable=None) + pipe.to(torch_device) + + inputs_normal = self.get_dummy_inputs(torch_device, num_frames=16) + inputs_normal["num_inference_steps"] = 2 + inputs_normal["strength"] = 0.5 + frames_normal = pipe(**inputs_normal).frames[0] + + for context_length in [8, 9]: + for context_stride in [4, 6]: + pipe.enable_free_noise(context_length, context_stride) + + inputs_enable_free_noise = self.get_dummy_inputs(torch_device, num_frames=16) + inputs_enable_free_noise["num_inference_steps"] = 2 + inputs_enable_free_noise["strength"] = 0.5 + frames_enable_free_noise = pipe(**inputs_enable_free_noise).frames[0] + + pipe.disable_free_noise() + inputs_disable_free_noise = self.get_dummy_inputs(torch_device, num_frames=16) + inputs_disable_free_noise["num_inference_steps"] = 2 + inputs_disable_free_noise["strength"] = 0.5 + frames_disable_free_noise = pipe(**inputs_disable_free_noise).frames[0] + + sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_noise)).sum() + max_diff_disabled = np.abs(to_np(frames_normal) - to_np(frames_disable_free_noise)).max() + self.assertGreater( + sum_enabled, + 1e1, + "Enabling of FreeNoise should lead to results different from the default pipeline results", + ) + self.assertLess( + max_diff_disabled, + 1e-4, + "Disabling of FreeNoise should lead to results similar to the default pipeline results", + ) + + def test_free_noise_multi_prompt(self): + components = self.get_dummy_components() + pipe: AnimateDiffVideoToVideoControlNetPipeline = self.pipeline_class(**components) + pipe.set_progress_bar_config(disable=None) + pipe.to(torch_device) + + context_length = 8 + context_stride = 4 + pipe.enable_free_noise(context_length, context_stride) + + # Make sure that pipeline works when prompt indices are within num_frames bounds + inputs = self.get_dummy_inputs(torch_device, num_frames=16) + inputs["prompt"] = {0: "Caterpillar on a leaf", 10: "Butterfly on a leaf"} + inputs["num_inference_steps"] = 2 + inputs["strength"] = 0.5 + pipe(**inputs).frames[0] + + with self.assertRaises(ValueError): + # Ensure that prompt indices are within bounds + inputs = self.get_dummy_inputs(torch_device, num_frames=16) + inputs["num_inference_steps"] = 2 + inputs["strength"] = 0.5 + inputs["prompt"] = {0: "Caterpillar on a leaf", 10: "Butterfly on a leaf", 42: "Error on a leaf"} + pipe(**inputs).frames[0]