From 8ab999e501ce56fc333a7b85cd08a4f70e437a88 Mon Sep 17 00:00:00 2001 From: Vincent Date: Thu, 11 Jan 2024 23:33:53 +0700 Subject: [PATCH] support compile --- examples/dreambooth/train_dreambooth.py | 32 +++++++++++++++---------- 1 file changed, 19 insertions(+), 13 deletions(-) diff --git a/examples/dreambooth/train_dreambooth.py b/examples/dreambooth/train_dreambooth.py index f652b1e79b..8b02db9ba9 100644 --- a/examples/dreambooth/train_dreambooth.py +++ b/examples/dreambooth/train_dreambooth.py @@ -55,6 +55,7 @@ from diffusers.optimization import get_scheduler from diffusers.training_utils import compute_snr from diffusers.utils import check_min_version, is_wandb_available from diffusers.utils.import_utils import is_xformers_available +from diffusers.utils.torch_utils import is_compiled_module if is_wandb_available(): @@ -106,6 +107,10 @@ DreamBooth for the text encoder was enabled: {train_text_encoder}. with open(os.path.join(repo_folder, "README.md"), "w") as f: f.write(yaml + model_card) +def unwrap_model(accelerator, model): + model = accelerator.unwrap_model(model) + model = model._orig_mod if is_compiled_module(model) else model + return model def log_validation( text_encoder, @@ -130,14 +135,14 @@ def log_validation( pipeline_args["vae"] = vae if text_encoder is not None: - text_encoder = accelerator.unwrap_model(text_encoder) + text_encoder = unwrap_model(accelerator, text_encoder) # create pipeline (note: unet and vae are loaded again in float32) pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, tokenizer=tokenizer, text_encoder=text_encoder, - unet=accelerator.unwrap_model(unet), + unet=unwrap_model(accelerator, unet), revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, @@ -794,6 +799,7 @@ def encode_prompt(text_encoder, input_ids, attention_mask, text_encoder_use_atte prompt_embeds = text_encoder( text_input_ids, attention_mask=attention_mask, + return_dict=False, ) prompt_embeds = prompt_embeds[0] @@ -935,7 +941,7 @@ def main(args): def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: for model in models: - sub_dir = "unet" if isinstance(model, type(accelerator.unwrap_model(unet))) else "text_encoder" + sub_dir = "unet" if isinstance(model, type(unwrap_model(accelerator, unet))) else "text_encoder" model.save_pretrained(os.path.join(output_dir, sub_dir)) # make sure to pop weight so that corresponding model is not saved again @@ -946,7 +952,7 @@ def main(args): # pop models so that they are not loaded again model = models.pop() - if isinstance(model, type(accelerator.unwrap_model(text_encoder))): + if isinstance(model, type(unwrap_model(accelerator, text_encoder))): # load transformers style into model load_model = text_encoder_cls.from_pretrained(input_dir, subfolder="text_encoder") model.config = load_model.config @@ -991,14 +997,14 @@ def main(args): " doing mixed precision training. copy of the weights should still be float32." ) - if accelerator.unwrap_model(unet).dtype != torch.float32: + if unwrap_model(accelerator, unet).dtype != torch.float32: raise ValueError( - f"Unet loaded as datatype {accelerator.unwrap_model(unet).dtype}. {low_precision_error_string}" + f"Unet loaded as datatype {unwrap_model(accelerator, unet).dtype}. {low_precision_error_string}" ) - if args.train_text_encoder and accelerator.unwrap_model(text_encoder).dtype != torch.float32: + if args.train_text_encoder and unwrap_model(accelerator, text_encoder).dtype != torch.float32: raise ValueError( - f"Text encoder loaded as datatype {accelerator.unwrap_model(text_encoder).dtype}." + f"Text encoder loaded as datatype {unwrap_model(accelerator, text_encoder).dtype}." f" {low_precision_error_string}" ) @@ -1246,7 +1252,7 @@ def main(args): text_encoder_use_attention_mask=args.text_encoder_use_attention_mask, ) - if accelerator.unwrap_model(unet).config.in_channels == channels * 2: + if unwrap_model(accelerator, unet).config.in_channels == channels * 2: noisy_model_input = torch.cat([noisy_model_input, noisy_model_input], dim=1) if args.class_labels_conditioning == "timesteps": @@ -1256,8 +1262,8 @@ def main(args): # Predict the noise residual model_pred = unet( - noisy_model_input, timesteps, encoder_hidden_states, class_labels=class_labels - ).sample + noisy_model_input, timesteps, encoder_hidden_states, class_labels=class_labels, return_dict=False + )[0] if model_pred.shape[1] == 6: model_pred, _ = torch.chunk(model_pred, 2, dim=1) @@ -1375,14 +1381,14 @@ def main(args): pipeline_args = {} if text_encoder is not None: - pipeline_args["text_encoder"] = accelerator.unwrap_model(text_encoder) + pipeline_args["text_encoder"] = unwrap_model(accelerator, text_encoder) if args.skip_save_text_encoder: pipeline_args["text_encoder"] = None pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, - unet=accelerator.unwrap_model(unet), + unet=unwrap_model(accelerator, unet), revision=args.revision, variant=args.variant, **pipeline_args,