diff --git a/models/vision/ddim/modeling_ddim.py b/models/vision/ddim/modeling_ddim.py index 2ff8dacccd..0c57a94e04 100644 --- a/models/vision/ddim/modeling_ddim.py +++ b/models/vision/ddim/modeling_ddim.py @@ -34,49 +34,68 @@ class DDIM(DiffusionPipeline): inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps) self.unet.to(torch_device) + + # Sample gaussian noise to begin loop image = self.noise_scheduler.sample_noise( (batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution), device=torch_device, generator=generator, ) + # See formulas (9), (10) and (7) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf + # Ideally, read DDIM paper in-detail understanding + + # Notation ( -> + # - pred_noise_t -> e_theta(x_t, t) + # - pred_original_image -> f_theta(x_t, t) or x_0 + # - std_dev_t -> sigma_t + # - eta -> η + # - pred_image_direction -> "direction pointingc to x_t" + # - pred_prev_image -> "x_t-1" for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps): - # get actual t and t-1 + # 1. predict noise residual + with torch.no_grad(): + pred_noise_t = self.unet(image, inference_step_times[t]) + + # 2. get actual t and t-1 train_step = inference_step_times[t] prev_train_step = inference_step_times[t - 1] if t > 0 else -1 - # compute alphas + # 3. compute alphas, betas alpha_prod_t = self.noise_scheduler.get_alpha_prod(train_step) alpha_prod_t_prev = self.noise_scheduler.get_alpha_prod(prev_train_step) - alpha_prod_t_rsqrt = 1 / alpha_prod_t.sqrt() - alpha_prod_t_prev_rsqrt = 1 / alpha_prod_t_prev.sqrt() - beta_prod_t_sqrt = (1 - alpha_prod_t).sqrt() - beta_prod_t_prev_sqrt = (1 - alpha_prod_t_prev).sqrt() + beta_prod_t = (1 - alpha_prod_t) + beta_prod_t_prev = (1 - alpha_prod_t_prev) - # compute relevant coefficients - coeff_1 = ( - (alpha_prod_t_prev - alpha_prod_t).sqrt() - * alpha_prod_t_prev_rsqrt - * beta_prod_t_prev_sqrt - / beta_prod_t_sqrt - * eta - ) - coeff_2 = ((1 - alpha_prod_t_prev) - coeff_1**2).sqrt() + # 4. Compute predicted previous image from predicted noise - # model forward - with torch.no_grad(): - noise_residual = self.unet(image, train_step) + # First: compute predicted original image from predicted noise also called + # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf + pred_original_image = (image - beta_prod_t.sqrt() * pred_noise_t) / alpha_prod_t.sqrt() - # predict mean of prev image - pred_mean = alpha_prod_t_rsqrt * (image - beta_prod_t_sqrt * noise_residual) - pred_mean = torch.clamp(pred_mean, -1, 1) - pred_mean = (1 / alpha_prod_t_prev_rsqrt) * pred_mean + coeff_2 * noise_residual + # Second: Clip "predicted x_0" + pred_original_image = torch.clamp(pred_original_image, -1, 1) - # if eta > 0.0 add noise. Note eta = 1.0 essentially corresponds to DDPM + # Third: Compute variance: "sigma_t(η)" -> see formula (16) + # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) + std_dev_t = (beta_prod_t_prev / beta_prod_t).sqrt() * (1 - alpha_prod_t / alpha_prod_t_prev).sqrt() + std_dev_t = eta * std_dev_t + + # Fourth: Compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf + pred_image_direction = (1 - alpha_prod_t_prev - std_dev_t**2).sqrt() * pred_noise_t + + # Fifth: Compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf + pred_prev_image = alpha_prod_t_prev.sqrt() * pred_original_image + pred_image_direction + + # 5. Sample x_t-1 image optionally if η > 0.0 by adding noise to pred_prev_image + # Note: eta = 1.0 essentially corresponds to DDPM if eta > 0.0: noise = self.noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator) - image = pred_mean + coeff_1 * noise + prev_image = pred_prev_image + std_dev_t * noise else: - image = pred_mean + prev_image = pred_prev_image + + # 6. Set current image to prev_image: x_t -> x_t-1 + image = prev_image return image