diff --git a/src/diffusers/schedulers/scheduling_ddim_inverse.py b/src/diffusers/schedulers/scheduling_ddim_inverse.py index 4b90ff22c2..cc35046b1b 100644 --- a/src/diffusers/schedulers/scheduling_ddim_inverse.py +++ b/src/diffusers/schedulers/scheduling_ddim_inverse.py @@ -333,7 +333,9 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin): """ # 1. get previous step value (=t+1) prev_timestep = timestep - timestep = min(timestep - self.config.num_train_timesteps // self.num_inference_steps, self.num_train_timesteps-1) + timestep = min( + timestep - self.config.num_train_timesteps // self.num_inference_steps, self.num_train_timesteps - 1 + ) # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process diff --git a/tests/schedulers/test_scheduler_ddim_inverse.py b/tests/schedulers/test_scheduler_ddim_inverse.py index 72eff8b6a1..ab6596b98b 100644 --- a/tests/schedulers/test_scheduler_ddim_inverse.py +++ b/tests/schedulers/test_scheduler_ddim_inverse.py @@ -51,7 +51,7 @@ class DDIMInverseSchedulerTest(SchedulerCommonTest): scheduler_config = self.get_scheduler_config(steps_offset=1) scheduler = scheduler_class(**scheduler_config) scheduler.set_timesteps(5) - assert torch.equal(scheduler.timesteps, torch.LongTensor([ 1, 201, 401, 601, 801])) + assert torch.equal(scheduler.timesteps, torch.LongTensor([1, 201, 401, 601, 801])) def test_betas(self): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):