diff --git a/examples/community/pipeline_prompt2prompt.py b/examples/community/pipeline_prompt2prompt.py index d0fa385627..580d3d38a0 100644 --- a/examples/community/pipeline_prompt2prompt.py +++ b/examples/community/pipeline_prompt2prompt.py @@ -501,7 +501,7 @@ class LocalBlend: alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, self.max_num_words) for i, (prompt, words_) in enumerate(zip(prompts, words)): - if type(words_) is str: + if isinstance(words_, str): words_ = [words_] for word in words_: ind = get_word_inds(prompt, word, tokenizer) @@ -565,7 +565,7 @@ class AttentionControlEdit(AttentionStore, abc.ABC): self.cross_replace_alpha = get_time_words_attention_alpha( prompts, num_steps, cross_replace_steps, self.tokenizer ).to(self.device) - if type(self_replace_steps) is float: + if isinstance(self_replace_steps, float): self_replace_steps = 0, self_replace_steps self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1]) self.local_blend = local_blend # 在外面定义后传进来 @@ -645,7 +645,7 @@ class AttentionReweight(AttentionControlEdit): def update_alpha_time_word( alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int, word_inds: Optional[torch.Tensor] = None ): - if type(bounds) is float: + if isinstance(bounds, float): bounds = 0, bounds start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0]) if word_inds is None: @@ -659,7 +659,7 @@ def update_alpha_time_word( def get_time_words_attention_alpha( prompts, num_steps, cross_replace_steps: Union[float, Dict[str, Tuple[float, float]]], tokenizer, max_num_words=77 ): - if type(cross_replace_steps) is not dict: + if not isinstance(cross_replace_steps, dict): cross_replace_steps = {"default_": cross_replace_steps} if "default_" not in cross_replace_steps: cross_replace_steps["default_"] = (0.0, 1.0) @@ -679,9 +679,9 @@ def get_time_words_attention_alpha( ### util functions for LocalBlend and ReplacementEdit def get_word_inds(text: str, word_place: int, tokenizer): split_text = text.split(" ") - if type(word_place) is str: + if isinstance(word_place, str): word_place = [i for i, word in enumerate(split_text) if word_place == word] - elif type(word_place) is int: + elif isinstance(word_place, str): word_place = [word_place] out = [] if len(word_place) > 0: @@ -750,7 +750,7 @@ def get_replacement_mapper(prompts, tokenizer, max_len=77): def get_equalizer( text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float], Tuple[float, ...]], tokenizer ): - if type(word_select) is int or type(word_select) is str: + if isinstance(word_select, (int, str)): word_select = (word_select,) equalizer = torch.ones(len(values), 77) values = torch.tensor(values, dtype=torch.float32) diff --git a/examples/community/run_onnx_controlnet.py b/examples/community/run_onnx_controlnet.py index b1a393ef69..6ccd7847c7 100644 --- a/examples/community/run_onnx_controlnet.py +++ b/examples/community/run_onnx_controlnet.py @@ -8,7 +8,6 @@ from typing import Any, Callable, Dict, List, Optional, Union import numpy as np import PIL.Image import torch -from diffusers.utils.torch_utils import randn_tensor from PIL import Image from transformers import CLIPTokenizer @@ -22,6 +21,7 @@ from diffusers.utils import ( logging, replace_example_docstring, ) +from diffusers.utils.torch_utils import randn_tensor logger = logging.get_logger(__name__) # pylint: disable=invalid-name diff --git a/examples/community/run_tensorrt_controlnet.py b/examples/community/run_tensorrt_controlnet.py index 530994687e..fa60a66242 100644 --- a/examples/community/run_tensorrt_controlnet.py +++ b/examples/community/run_tensorrt_controlnet.py @@ -11,7 +11,6 @@ import PIL.Image import pycuda.driver as cuda import tensorrt as trt import torch -from diffusers.utils.torch_utils import randn_tensor from PIL import Image from pycuda.tools import make_default_context from transformers import CLIPTokenizer @@ -26,6 +25,7 @@ from diffusers.utils import ( logging, replace_example_docstring, ) +from diffusers.utils.torch_utils import randn_tensor # Initialize CUDA diff --git a/src/diffusers/models/attention_processor.py b/src/diffusers/models/attention_processor.py index 36851085c4..34593a4e77 100644 --- a/src/diffusers/models/attention_processor.py +++ b/src/diffusers/models/attention_processor.py @@ -382,7 +382,7 @@ class Attention(nn.Module): } if hasattr(self.processor, "attention_op"): - kwargs["attention_op"] = self.prcoessor.attention_op + kwargs["attention_op"] = self.processor.attention_op lora_processor = lora_processor_cls(hidden_size, **kwargs) lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) diff --git a/src/diffusers/pipelines/versatile_diffusion/modeling_text_unet.py b/src/diffusers/pipelines/versatile_diffusion/modeling_text_unet.py index 4133fcb48c..703db3204e 100644 --- a/src/diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +++ b/src/diffusers/pipelines/versatile_diffusion/modeling_text_unet.py @@ -992,7 +992,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin): upsample_size = None if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): - logger.info("Forward upsample size to force interpolation output size.") + # Forward upsample size to force interpolation output size. forward_upsample_size = True # ensure attention_mask is a bias, and give it a singleton query_tokens dimension