diff --git a/docs/source/en/api/pipelines/stable_diffusion/stable_diffusion_xl.md b/docs/source/en/api/pipelines/stable_diffusion/stable_diffusion_xl.md index e4bea11c5a..5070cb33ce 100644 --- a/docs/source/en/api/pipelines/stable_diffusion/stable_diffusion_xl.md +++ b/docs/source/en/api/pipelines/stable_diffusion/stable_diffusion_xl.md @@ -26,8 +26,8 @@ The abstract of the paper is the following: ### Available checkpoints: -- *Text-to-Image (1024x1024 resolution)*: [stabilityai/stable-diffusion-xl-base-0.9](https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9) with [`StableDiffusionXLPipeline`] -- *Image-to-Image / Refiner (1024x1024 resolution)*: [stabilityai/stable-diffusion-xl-refiner-0.9](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-0.9) with [`StableDiffusionXLImg2ImgPipeline`] +- *Text-to-Image (1024x1024 resolution)*: [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) with [`StableDiffusionXLPipeline`] +- *Image-to-Image / Refiner (1024x1024 resolution)*: [stabilityai/stable-diffusion-xl-refiner-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0) with [`StableDiffusionXLImg2ImgPipeline`] ## Usage Example @@ -50,7 +50,7 @@ from diffusers import StableDiffusionXLPipeline import torch pipe = StableDiffusionXLPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16, variant="fp16", use_safetensors=True + "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe.to("cuda") @@ -68,7 +68,7 @@ from diffusers import StableDiffusionXLImg2ImgPipeline from diffusers.utils import load_image pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16, variant="fp16", use_safetensors=True + "stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe = pipe.to("cuda") url = "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png" @@ -88,7 +88,7 @@ from diffusers import StableDiffusionXLInpaintPipeline from diffusers.utils import load_image pipe = StableDiffusionXLInpaintPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16, variant="fp16", use_safetensors=True + "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe.to("cuda") @@ -104,8 +104,8 @@ image = pipe(prompt=prompt, image=init_image, mask_image=mask_image, num_inferen ### Refining the image output -In addition to the [base model checkpoint](https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9), -StableDiffusion-XL also includes a [refiner checkpoint](huggingface.co/stabilityai/stable-diffusion-xl-refiner-0.9) +In addition to the [base model checkpoint](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0), +StableDiffusion-XL also includes a [refiner checkpoint](huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0) that is specialized in denoising low-noise stage images to generate images of improved high-frequency quality. This refiner checkpoint can be used as a "second-step" pipeline after having run the base checkpoint to improve image quality. @@ -149,12 +149,12 @@ from diffusers import DiffusionPipeline import torch base = DiffusionPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16, variant="fp16", use_safetensors=True + "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe.to("cuda") refiner = DiffusionPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-refiner-0.9", + "stabilityai/stable-diffusion-xl-refiner-1.0", text_encoder_2=base.text_encoder_2, vae=base.vae, torch_dtype=torch.float16, @@ -219,7 +219,7 @@ The ensemble-of-experts method works well on all available schedulers! #### 2.) Refining the image output from fully denoised base image In standard [`StableDiffusionImg2ImgPipeline`]-fashion, the fully-denoised image generated of the base model -can be further improved using the [refiner checkpoint](huggingface.co/stabilityai/stable-diffusion-xl-refiner-0.9). +can be further improved using the [refiner checkpoint](huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0). For this, you simply run the refiner as a normal image-to-image pipeline after the "base" text-to-image pipeline. You can leave the outputs of the base model in latent space. @@ -229,12 +229,12 @@ from diffusers import DiffusionPipeline import torch pipe = DiffusionPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16, variant="fp16", use_safetensors=True + "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe.to("cuda") refiner = DiffusionPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-refiner-0.9", + "stabilityai/stable-diffusion-xl-refiner-1.0", text_encoder_2=pipe.text_encoder_2, vae=pipe.vae, torch_dtype=torch.float16, @@ -267,12 +267,12 @@ from diffusers import StableDiffusionXLInpaintPipeline from diffusers.utils import load_image pipe = StableDiffusionXLInpaintPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16, variant="fp16", use_safetensors=True + "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe.to("cuda") refiner = StableDiffusionXLInpaintPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-refiner-0.9", + "stabilityai/stable-diffusion-xl-refiner-1.0", text_encoder_2=pipe.text_encoder_2, vae=pipe.vae, torch_dtype=torch.float16, @@ -321,12 +321,12 @@ from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipelin import torch pipe = StableDiffusionXLPipeline.from_single_file( - "./sd_xl_base_0.9.safetensors", torch_dtype=torch.float16, variant="fp16", use_safetensors=True + "./sd_xl_base_1.0.safetensors", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe.to("cuda") refiner = StableDiffusionXLImg2ImgPipeline.from_single_file( - "./sd_xl_refiner_0.9.safetensors", torch_dtype=torch.float16, use_safetensors=True, variant="fp16" + "./sd_xl_refiner_1.0.safetensors", torch_dtype=torch.float16, use_safetensors=True, variant="fp16" ) refiner.to("cuda") ``` @@ -399,7 +399,7 @@ from diffusers import StableDiffusionXLPipeline import torch pipe = StableDiffusionXLPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16, variant="fp16", use_safetensors=True + "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe.to("cuda") diff --git a/examples/controlnet/README_sdxl.md b/examples/controlnet/README_sdxl.md index 4e4035066f..db8dada654 100644 --- a/examples/controlnet/README_sdxl.md +++ b/examples/controlnet/README_sdxl.md @@ -61,7 +61,7 @@ wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/ma Then run `huggingface-cli login` to log into your Hugging Face account. This is needed to be able to push the trained ControlNet parameters to Hugging Face Hub. ```bash -export MODEL_DIR="stabilityai/stable-diffusion-xl-base-0.9" +export MODEL_DIR="stabilityai/stable-diffusion-xl-base-1.0" export OUTPUT_DIR="path to save model" accelerate launch train_controlnet_sdxl.py \ @@ -98,7 +98,7 @@ from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, UniP from diffusers.utils import load_image import torch -base_model_path = "stabilityai/stable-diffusion-xl-base-0.9" +base_model_path = "stabilityai/stable-diffusion-xl-base-1.0" controlnet_path = "path to controlnet" controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16) diff --git a/examples/controlnet/train_controlnet_sdxl.py b/examples/controlnet/train_controlnet_sdxl.py index 7acb1c259b..50cbfa5a78 100644 --- a/examples/controlnet/train_controlnet_sdxl.py +++ b/examples/controlnet/train_controlnet_sdxl.py @@ -231,7 +231,7 @@ These are controlnet weights trained on {base_model} with new type of conditioni ## License -[SDXL 0.9 Research License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9/blob/main/LICENSE.md) +[SDXL 1.0 License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md) """ with open(os.path.join(repo_folder, "README.md"), "w") as f: f.write(yaml + model_card) diff --git a/examples/dreambooth/README_sdxl.md b/examples/dreambooth/README_sdxl.md index 688ec7149e..7dcde78f2c 100644 --- a/examples/dreambooth/README_sdxl.md +++ b/examples/dreambooth/README_sdxl.md @@ -76,7 +76,7 @@ This will also allow us to push the trained LoRA parameters to the Hugging Face Now, we can launch training using: ```bash -export MODEL_NAME="stabilityai/stable-diffusion-xl-base-0.9" +export MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0" export INSTANCE_DIR="dog" export OUTPUT_DIR="lora-trained-xl" @@ -127,7 +127,7 @@ image = pipe("A picture of a sks dog in a bucket", num_inference_steps=25).image image.save("sks_dog.png") ``` -We can further refine the outputs with the [Refiner](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-0.9): +We can further refine the outputs with the [Refiner](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0): ```python from huggingface_hub.repocard import RepoCard @@ -145,7 +145,7 @@ pipe.load_lora_weights(lora_model_id) # Load the refiner. refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16, use_safetensors=True, variant="fp16" + "stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16" ) refiner.to("cuda") diff --git a/examples/dreambooth/train_dreambooth_lora_sdxl.py b/examples/dreambooth/train_dreambooth_lora_sdxl.py index 3ba8b5a49c..17e62c39ce 100644 --- a/examples/dreambooth/train_dreambooth_lora_sdxl.py +++ b/examples/dreambooth/train_dreambooth_lora_sdxl.py @@ -97,7 +97,7 @@ Special VAE used for training: {vae_path}. ## License -[SDXL 0.9 Research License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9/blob/main/LICENSE.md) +[SDXL 1.0 License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md) """ with open(os.path.join(repo_folder, "README.md"), "w") as f: f.write(yaml + model_card) diff --git a/examples/instruct_pix2pix/README_sdxl.md b/examples/instruct_pix2pix/README_sdxl.md index f2eeee6d87..8e3e6c8812 100644 --- a/examples/instruct_pix2pix/README_sdxl.md +++ b/examples/instruct_pix2pix/README_sdxl.md @@ -15,7 +15,7 @@ training procedure while being faithful to the [original implementation](https:/ Refer to the original InstructPix2Pix training example for installing the dependencies. -You will also need to get access of SDXL by filling the [form](https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9). +You will also need to get access of SDXL by filling the [form](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0). ### Toy example @@ -26,7 +26,7 @@ Configure environment variables such as the dataset identifier and the Stable Di checkpoint: ```bash -export MODEL_NAME="stabilityai/stable-diffusion-xl-base-0.9" +export MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0" export DATASET_ID="fusing/instructpix2pix-1000-samples" ``` @@ -51,7 +51,7 @@ with Weights and Biases. You can enable this feature with `report_to="wandb"`: ```bash python train_instruct_pix2pix_xl.py \ - --pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-0.9 \ + --pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0 \ --dataset_name=$DATASET_ID \ --use_ema \ --enable_xformers_memory_efficient_attention \ @@ -80,7 +80,7 @@ for running distributed training with `accelerate`. Here is an example command: ```bash accelerate launch --mixed_precision="fp16" --multi_gpu train_instruct_pix2pix.py \ - --pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-0.9 \ + --pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0 \ --dataset_name=$DATASET_ID \ --use_ema \ --enable_xformers_memory_efficient_attention \ diff --git a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py index 342c8862b4..0db2ec81ec 100644 --- a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +++ b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py @@ -50,7 +50,7 @@ EXAMPLE_DOC_STRING = """ >>> from diffusers import StableDiffusionXLPipeline >>> pipe = StableDiffusionXLPipeline.from_pretrained( - ... "stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16 + ... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") diff --git a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py index 6125537868..4357d40562 100644 --- a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +++ b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py @@ -52,7 +52,7 @@ EXAMPLE_DOC_STRING = """ >>> from diffusers.utils import load_image >>> pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained( - ... "stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16 + ... "stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> url = "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png" diff --git a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py index a5940e4bc0..06ca880910 100644 --- a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +++ b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py @@ -47,7 +47,7 @@ EXAMPLE_DOC_STRING = """ >>> from diffusers.utils import load_image >>> pipe = StableDiffusionXLInpaintPipeline.from_pretrained( - ... "stabilityai/stable-diffusion-xl-base-0.9", + ... "stabilityai/stable-diffusion-xl-base-1.0", ... torch_dtype=torch.float16, ... variant="fp16", ... use_safetensors=True,