mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Add SVD (#5895)
* begin model * finish blocks * add_embedding * addition_time_embed_dim * use TimestepEmbedding * fix temporal res block * fix time_pos_embed * fix add_embedding * add conversion script * fix model * up * add new resnet blocks * make forward work * return sample in original shape * fix temb shape in TemporalResnetBlock * add spatio temporal transformers * add vae blocks * fix blocks * update * update * fix shapes in Alphablender and add time activation in res blcok * use new blocks * style * fix temb shape * fix SpatioTemporalResBlock * reuse TemporalBasicTransformerBlock * fix TemporalBasicTransformerBlock * use TransformerSpatioTemporalModel * fix TransformerSpatioTemporalModel * fix time_context dim * clean up * make temb optional * add blocks * rename model * update conversion script * remove UNetMidBlockSpatioTemporal * add in init * remove unused arg * remove unused arg * remove more unsed args * up * up * check for None * update vae * update up/mid blocks for decoder * begin pipeline * adapt scheduler * add guidance scalings * fix norm eps in temporal transformers * add temporal autoencoder * make pipeline run * fix frame decodig * decode in float32 * decode n frames at a time * pass decoding_t to decode_latents * fix decode_latents * vae encode/decode in fp32 * fix dtype in TransformerSpatioTemporalModel * type image_latents same as image_embeddings * allow using differnt eps in temporal block for video decoder * fix default values in vae * pass num frames in decode * switch spatial to temporal for mixing in VAE * fix num frames during split decoding * cast alpha to sample dtype * fix attention in MidBlockTemporalDecoder * fix typo * fix guidance_scales dtype * fix missing activation in TemporalDecoder * skip_post_quant_conv * add vae conversion * style * take guidance scale as input * up * allow passing PIL to export_video * accept fps as arg * add pipeline and vae in init * remove hack * use AutoencoderKLTemporalDecoder * don't scale image latents * add unet tests * clean up unet * clean TransformerSpatioTemporalModel * add slow svd test * clean up * make temb optional in Decoder mid block * fix norm eps in TransformerSpatioTemporalModel * clean up temp decoder * clean up * clean up * use c_noise values for timesteps * use math for log * update * fix copies * doc * upcast vae * update forward pass for gradient checkpointing * make added_time_ids is tensor * up * fix upcasting * remove post quant conv * add _resize_with_antialiasing * fix _compute_padding * cleanup model * more cleanup * more cleanup * more cleanup * remove freeu * remove attn slice * small clean * up * up * remove extra step kwargs * remove eta * remove dropout * remove callback * remove merge factor args * clean * clean up * move to dedicated folder * remove attention_head_dim * docstr and small fix * update unet doc strings * rename decoding_t * correct linting * store c_skip and c_out * cleanup * clean TemporalResnetBlock * more cleanup * clean up vae * clean up * begin doc * more cleanup * up * up * doc * Improve * better naming * better naming * better naming * better naming * better naming * better naming * better naming * better naming * Apply suggestions from code review * Default chunk size to None * add example * Better * Apply suggestions from code review * update doc * Update src/diffusers/pipelines/stable_diffusion_video/pipeline_stable_diffusion_video.py Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> * style * Get torch compile working * up * rename * fix doc * add chunking * torch compile * torch compile * add modelling outputs * torch compile * Improve chunking * Apply suggestions from code review * Update docs/source/en/using-diffusers/svd.md * Close diff tag * remove slicing * resnet docstr * add docstr in resnet * rename * Apply suggestions from code review * update tests * Fix output type latents * fix more * fix more * Update docs/source/en/using-diffusers/svd.md * fix more * add pipeline tests * remove unused arg * clean up * make sure get_scaling receives tensors * fix euler scheduler * fix get_scalings * simply euler for now * remove old test file * use randn_tensor to create noise * fix device for rand tensor * increase expected_max_difference * fix test_inference_batch_single_identical * actually fix test_inference_batch_single_identical * disable test_save_load_float16 * skip test_float16_inference * skip test_inference_batch_single_identical * fix test_xformers_attention_forwardGenerator_pass * Apply suggestions from code review * update StableVideoDiffusionPipelineSlowTests * update image * add diffusers example * fix more --------- Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com> Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by: apolinário <joaopaulo.passos@gmail.com>
This commit is contained in:
730
scripts/convert_svd_to_diffusers.py
Normal file
730
scripts/convert_svd_to_diffusers.py
Normal file
@@ -0,0 +1,730 @@
|
||||
from diffusers.utils import is_accelerate_available, logging
|
||||
|
||||
|
||||
if is_accelerate_available():
|
||||
pass
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
def create_unet_diffusers_config(original_config, image_size: int, controlnet=False):
|
||||
"""
|
||||
Creates a config for the diffusers based on the config of the LDM model.
|
||||
"""
|
||||
if controlnet:
|
||||
unet_params = original_config.model.params.control_stage_config.params
|
||||
else:
|
||||
if "unet_config" in original_config.model.params and original_config.model.params.unet_config is not None:
|
||||
unet_params = original_config.model.params.unet_config.params
|
||||
else:
|
||||
unet_params = original_config.model.params.network_config.params
|
||||
|
||||
vae_params = original_config.model.params.first_stage_config.params.encoder_config.params
|
||||
|
||||
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
|
||||
|
||||
down_block_types = []
|
||||
resolution = 1
|
||||
for i in range(len(block_out_channels)):
|
||||
block_type = (
|
||||
"CrossAttnDownBlockSpatioTemporal"
|
||||
if resolution in unet_params.attention_resolutions
|
||||
else "DownBlockSpatioTemporal"
|
||||
)
|
||||
down_block_types.append(block_type)
|
||||
if i != len(block_out_channels) - 1:
|
||||
resolution *= 2
|
||||
|
||||
up_block_types = []
|
||||
for i in range(len(block_out_channels)):
|
||||
block_type = (
|
||||
"CrossAttnUpBlockSpatioTemporal"
|
||||
if resolution in unet_params.attention_resolutions
|
||||
else "UpBlockSpatioTemporal"
|
||||
)
|
||||
up_block_types.append(block_type)
|
||||
resolution //= 2
|
||||
|
||||
if unet_params.transformer_depth is not None:
|
||||
transformer_layers_per_block = (
|
||||
unet_params.transformer_depth
|
||||
if isinstance(unet_params.transformer_depth, int)
|
||||
else list(unet_params.transformer_depth)
|
||||
)
|
||||
else:
|
||||
transformer_layers_per_block = 1
|
||||
|
||||
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
|
||||
|
||||
head_dim = unet_params.num_heads if "num_heads" in unet_params else None
|
||||
use_linear_projection = (
|
||||
unet_params.use_linear_in_transformer if "use_linear_in_transformer" in unet_params else False
|
||||
)
|
||||
if use_linear_projection:
|
||||
# stable diffusion 2-base-512 and 2-768
|
||||
if head_dim is None:
|
||||
head_dim_mult = unet_params.model_channels // unet_params.num_head_channels
|
||||
head_dim = [head_dim_mult * c for c in list(unet_params.channel_mult)]
|
||||
|
||||
class_embed_type = None
|
||||
addition_embed_type = None
|
||||
addition_time_embed_dim = None
|
||||
projection_class_embeddings_input_dim = None
|
||||
context_dim = None
|
||||
|
||||
if unet_params.context_dim is not None:
|
||||
context_dim = (
|
||||
unet_params.context_dim if isinstance(unet_params.context_dim, int) else unet_params.context_dim[0]
|
||||
)
|
||||
|
||||
if "num_classes" in unet_params:
|
||||
if unet_params.num_classes == "sequential":
|
||||
addition_time_embed_dim = 256
|
||||
assert "adm_in_channels" in unet_params
|
||||
projection_class_embeddings_input_dim = unet_params.adm_in_channels
|
||||
|
||||
config = {
|
||||
"sample_size": image_size // vae_scale_factor,
|
||||
"in_channels": unet_params.in_channels,
|
||||
"down_block_types": tuple(down_block_types),
|
||||
"block_out_channels": tuple(block_out_channels),
|
||||
"layers_per_block": unet_params.num_res_blocks,
|
||||
"cross_attention_dim": context_dim,
|
||||
"attention_head_dim": head_dim,
|
||||
"use_linear_projection": use_linear_projection,
|
||||
"class_embed_type": class_embed_type,
|
||||
"addition_embed_type": addition_embed_type,
|
||||
"addition_time_embed_dim": addition_time_embed_dim,
|
||||
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
|
||||
"transformer_layers_per_block": transformer_layers_per_block,
|
||||
}
|
||||
|
||||
if "disable_self_attentions" in unet_params:
|
||||
config["only_cross_attention"] = unet_params.disable_self_attentions
|
||||
|
||||
if "num_classes" in unet_params and isinstance(unet_params.num_classes, int):
|
||||
config["num_class_embeds"] = unet_params.num_classes
|
||||
|
||||
if controlnet:
|
||||
config["conditioning_channels"] = unet_params.hint_channels
|
||||
else:
|
||||
config["out_channels"] = unet_params.out_channels
|
||||
config["up_block_types"] = tuple(up_block_types)
|
||||
|
||||
return config
|
||||
|
||||
|
||||
def assign_to_checkpoint(
|
||||
paths,
|
||||
checkpoint,
|
||||
old_checkpoint,
|
||||
attention_paths_to_split=None,
|
||||
additional_replacements=None,
|
||||
config=None,
|
||||
mid_block_suffix="",
|
||||
):
|
||||
"""
|
||||
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
|
||||
attention layers, and takes into account additional replacements that may arise.
|
||||
|
||||
Assigns the weights to the new checkpoint.
|
||||
"""
|
||||
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
|
||||
|
||||
# Splits the attention layers into three variables.
|
||||
if attention_paths_to_split is not None:
|
||||
for path, path_map in attention_paths_to_split.items():
|
||||
old_tensor = old_checkpoint[path]
|
||||
channels = old_tensor.shape[0] // 3
|
||||
|
||||
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
|
||||
|
||||
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
|
||||
|
||||
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
|
||||
query, key, value = old_tensor.split(channels // num_heads, dim=1)
|
||||
|
||||
checkpoint[path_map["query"]] = query.reshape(target_shape)
|
||||
checkpoint[path_map["key"]] = key.reshape(target_shape)
|
||||
checkpoint[path_map["value"]] = value.reshape(target_shape)
|
||||
|
||||
if mid_block_suffix is not None:
|
||||
mid_block_suffix = f".{mid_block_suffix}"
|
||||
else:
|
||||
mid_block_suffix = ""
|
||||
|
||||
for path in paths:
|
||||
new_path = path["new"]
|
||||
|
||||
# These have already been assigned
|
||||
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
|
||||
continue
|
||||
|
||||
# Global renaming happens here
|
||||
new_path = new_path.replace("middle_block.0", f"mid_block.resnets.0{mid_block_suffix}")
|
||||
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
|
||||
new_path = new_path.replace("middle_block.2", f"mid_block.resnets.1{mid_block_suffix}")
|
||||
|
||||
if additional_replacements is not None:
|
||||
for replacement in additional_replacements:
|
||||
new_path = new_path.replace(replacement["old"], replacement["new"])
|
||||
|
||||
if new_path == "mid_block.resnets.0.spatial_res_block.norm1.weight":
|
||||
print("yeyy")
|
||||
|
||||
# proj_attn.weight has to be converted from conv 1D to linear
|
||||
is_attn_weight = "proj_attn.weight" in new_path or ("attentions" in new_path and "to_" in new_path)
|
||||
shape = old_checkpoint[path["old"]].shape
|
||||
if is_attn_weight and len(shape) == 3:
|
||||
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
|
||||
elif is_attn_weight and len(shape) == 4:
|
||||
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0]
|
||||
else:
|
||||
checkpoint[new_path] = old_checkpoint[path["old"]]
|
||||
|
||||
|
||||
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
|
||||
"""
|
||||
Updates paths inside attentions to the new naming scheme (local renaming)
|
||||
"""
|
||||
mapping = []
|
||||
for old_item in old_list:
|
||||
new_item = old_item
|
||||
|
||||
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
|
||||
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
|
||||
|
||||
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
|
||||
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
|
||||
|
||||
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
||||
new_item = new_item.replace("time_stack", "temporal_transformer_blocks")
|
||||
|
||||
new_item = new_item.replace("time_pos_embed.0.bias", "time_pos_embed.linear_1.bias")
|
||||
new_item = new_item.replace("time_pos_embed.0.weight", "time_pos_embed.linear_1.weight")
|
||||
new_item = new_item.replace("time_pos_embed.2.bias", "time_pos_embed.linear_2.bias")
|
||||
new_item = new_item.replace("time_pos_embed.2.weight", "time_pos_embed.linear_2.weight")
|
||||
|
||||
mapping.append({"old": old_item, "new": new_item})
|
||||
|
||||
return mapping
|
||||
|
||||
|
||||
def shave_segments(path, n_shave_prefix_segments=1):
|
||||
"""
|
||||
Removes segments. Positive values shave the first segments, negative shave the last segments.
|
||||
"""
|
||||
if n_shave_prefix_segments >= 0:
|
||||
return ".".join(path.split(".")[n_shave_prefix_segments:])
|
||||
else:
|
||||
return ".".join(path.split(".")[:n_shave_prefix_segments])
|
||||
|
||||
|
||||
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
|
||||
"""
|
||||
Updates paths inside resnets to the new naming scheme (local renaming)
|
||||
"""
|
||||
mapping = []
|
||||
for old_item in old_list:
|
||||
new_item = old_item.replace("in_layers.0", "norm1")
|
||||
new_item = new_item.replace("in_layers.2", "conv1")
|
||||
|
||||
new_item = new_item.replace("out_layers.0", "norm2")
|
||||
new_item = new_item.replace("out_layers.3", "conv2")
|
||||
|
||||
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
|
||||
new_item = new_item.replace("skip_connection", "conv_shortcut")
|
||||
|
||||
new_item = new_item.replace("time_stack.", "")
|
||||
|
||||
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
||||
|
||||
mapping.append({"old": old_item, "new": new_item})
|
||||
|
||||
return mapping
|
||||
|
||||
|
||||
def convert_ldm_unet_checkpoint(
|
||||
checkpoint, config, path=None, extract_ema=False, controlnet=False, skip_extract_state_dict=False
|
||||
):
|
||||
"""
|
||||
Takes a state dict and a config, and returns a converted checkpoint.
|
||||
"""
|
||||
|
||||
if skip_extract_state_dict:
|
||||
unet_state_dict = checkpoint
|
||||
else:
|
||||
# extract state_dict for UNet
|
||||
unet_state_dict = {}
|
||||
keys = list(checkpoint.keys())
|
||||
|
||||
unet_key = "model.diffusion_model."
|
||||
|
||||
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
|
||||
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
|
||||
logger.warning(f"Checkpoint {path} has both EMA and non-EMA weights.")
|
||||
logger.warning(
|
||||
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
|
||||
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
|
||||
)
|
||||
for key in keys:
|
||||
if key.startswith("model.diffusion_model"):
|
||||
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
|
||||
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
|
||||
else:
|
||||
if sum(k.startswith("model_ema") for k in keys) > 100:
|
||||
logger.warning(
|
||||
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
|
||||
" weights (usually better for inference), please make sure to add the `--extract_ema` flag."
|
||||
)
|
||||
|
||||
for key in keys:
|
||||
if key.startswith(unet_key):
|
||||
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
|
||||
|
||||
new_checkpoint = {}
|
||||
|
||||
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
|
||||
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
|
||||
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
|
||||
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
|
||||
|
||||
if config["class_embed_type"] is None:
|
||||
# No parameters to port
|
||||
...
|
||||
elif config["class_embed_type"] == "timestep" or config["class_embed_type"] == "projection":
|
||||
new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"]
|
||||
new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"]
|
||||
new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"]
|
||||
new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"]
|
||||
else:
|
||||
raise NotImplementedError(f"Not implemented `class_embed_type`: {config['class_embed_type']}")
|
||||
|
||||
# if config["addition_embed_type"] == "text_time":
|
||||
new_checkpoint["add_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"]
|
||||
new_checkpoint["add_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"]
|
||||
new_checkpoint["add_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"]
|
||||
new_checkpoint["add_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"]
|
||||
|
||||
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
|
||||
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
|
||||
|
||||
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
|
||||
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
|
||||
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
|
||||
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
|
||||
|
||||
# Retrieves the keys for the input blocks only
|
||||
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
|
||||
input_blocks = {
|
||||
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
|
||||
for layer_id in range(num_input_blocks)
|
||||
}
|
||||
|
||||
# Retrieves the keys for the middle blocks only
|
||||
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
|
||||
middle_blocks = {
|
||||
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
|
||||
for layer_id in range(num_middle_blocks)
|
||||
}
|
||||
|
||||
# Retrieves the keys for the output blocks only
|
||||
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
|
||||
output_blocks = {
|
||||
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
|
||||
for layer_id in range(num_output_blocks)
|
||||
}
|
||||
|
||||
for i in range(1, num_input_blocks):
|
||||
block_id = (i - 1) // (config["layers_per_block"] + 1)
|
||||
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
|
||||
|
||||
spatial_resnets = [
|
||||
key
|
||||
for key in input_blocks[i]
|
||||
if f"input_blocks.{i}.0" in key
|
||||
and (
|
||||
f"input_blocks.{i}.0.op" not in key
|
||||
and f"input_blocks.{i}.0.time_stack" not in key
|
||||
and f"input_blocks.{i}.0.time_mixer" not in key
|
||||
)
|
||||
]
|
||||
temporal_resnets = [key for key in input_blocks[i] if f"input_blocks.{i}.0.time_stack" in key]
|
||||
# import ipdb; ipdb.set_trace()
|
||||
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
|
||||
|
||||
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
|
||||
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
|
||||
f"input_blocks.{i}.0.op.weight"
|
||||
)
|
||||
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
|
||||
f"input_blocks.{i}.0.op.bias"
|
||||
)
|
||||
|
||||
paths = renew_resnet_paths(spatial_resnets)
|
||||
meta_path = {
|
||||
"old": f"input_blocks.{i}.0",
|
||||
"new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}.spatial_res_block",
|
||||
}
|
||||
assign_to_checkpoint(
|
||||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
||||
)
|
||||
|
||||
paths = renew_resnet_paths(temporal_resnets)
|
||||
meta_path = {
|
||||
"old": f"input_blocks.{i}.0",
|
||||
"new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}.temporal_res_block",
|
||||
}
|
||||
assign_to_checkpoint(
|
||||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
||||
)
|
||||
|
||||
# TODO resnet time_mixer.mix_factor
|
||||
if f"input_blocks.{i}.0.time_mixer.mix_factor" in unet_state_dict:
|
||||
new_checkpoint[
|
||||
f"down_blocks.{block_id}.resnets.{layer_in_block_id}.time_mixer.mix_factor"
|
||||
] = unet_state_dict[f"input_blocks.{i}.0.time_mixer.mix_factor"]
|
||||
|
||||
if len(attentions):
|
||||
paths = renew_attention_paths(attentions)
|
||||
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
|
||||
# import ipdb; ipdb.set_trace()
|
||||
assign_to_checkpoint(
|
||||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
||||
)
|
||||
|
||||
resnet_0 = middle_blocks[0]
|
||||
attentions = middle_blocks[1]
|
||||
resnet_1 = middle_blocks[2]
|
||||
|
||||
resnet_0_spatial = [key for key in resnet_0 if "time_stack" not in key and "time_mixer" not in key]
|
||||
resnet_0_paths = renew_resnet_paths(resnet_0_spatial)
|
||||
# import ipdb; ipdb.set_trace()
|
||||
assign_to_checkpoint(
|
||||
resnet_0_paths, new_checkpoint, unet_state_dict, config=config, mid_block_suffix="spatial_res_block"
|
||||
)
|
||||
|
||||
resnet_0_temporal = [key for key in resnet_0 if "time_stack" in key and "time_mixer" not in key]
|
||||
resnet_0_paths = renew_resnet_paths(resnet_0_temporal)
|
||||
assign_to_checkpoint(
|
||||
resnet_0_paths, new_checkpoint, unet_state_dict, config=config, mid_block_suffix="temporal_res_block"
|
||||
)
|
||||
|
||||
resnet_1_spatial = [key for key in resnet_1 if "time_stack" not in key and "time_mixer" not in key]
|
||||
resnet_1_paths = renew_resnet_paths(resnet_1_spatial)
|
||||
assign_to_checkpoint(
|
||||
resnet_1_paths, new_checkpoint, unet_state_dict, config=config, mid_block_suffix="spatial_res_block"
|
||||
)
|
||||
|
||||
resnet_1_temporal = [key for key in resnet_1 if "time_stack" in key and "time_mixer" not in key]
|
||||
resnet_1_paths = renew_resnet_paths(resnet_1_temporal)
|
||||
assign_to_checkpoint(
|
||||
resnet_1_paths, new_checkpoint, unet_state_dict, config=config, mid_block_suffix="temporal_res_block"
|
||||
)
|
||||
|
||||
new_checkpoint["mid_block.resnets.0.time_mixer.mix_factor"] = unet_state_dict[
|
||||
"middle_block.0.time_mixer.mix_factor"
|
||||
]
|
||||
new_checkpoint["mid_block.resnets.1.time_mixer.mix_factor"] = unet_state_dict[
|
||||
"middle_block.2.time_mixer.mix_factor"
|
||||
]
|
||||
|
||||
attentions_paths = renew_attention_paths(attentions)
|
||||
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
|
||||
assign_to_checkpoint(
|
||||
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
||||
)
|
||||
|
||||
for i in range(num_output_blocks):
|
||||
block_id = i // (config["layers_per_block"] + 1)
|
||||
layer_in_block_id = i % (config["layers_per_block"] + 1)
|
||||
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
|
||||
output_block_list = {}
|
||||
|
||||
for layer in output_block_layers:
|
||||
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
|
||||
if layer_id in output_block_list:
|
||||
output_block_list[layer_id].append(layer_name)
|
||||
else:
|
||||
output_block_list[layer_id] = [layer_name]
|
||||
|
||||
if len(output_block_list) > 1:
|
||||
spatial_resnets = [
|
||||
key
|
||||
for key in output_blocks[i]
|
||||
if f"output_blocks.{i}.0" in key
|
||||
and (f"output_blocks.{i}.0.time_stack" not in key and "time_mixer" not in key)
|
||||
]
|
||||
# import ipdb; ipdb.set_trace()
|
||||
|
||||
temporal_resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0.time_stack" in key]
|
||||
|
||||
paths = renew_resnet_paths(spatial_resnets)
|
||||
meta_path = {
|
||||
"old": f"output_blocks.{i}.0",
|
||||
"new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}.spatial_res_block",
|
||||
}
|
||||
assign_to_checkpoint(
|
||||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
||||
)
|
||||
|
||||
paths = renew_resnet_paths(temporal_resnets)
|
||||
meta_path = {
|
||||
"old": f"output_blocks.{i}.0",
|
||||
"new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}.temporal_res_block",
|
||||
}
|
||||
assign_to_checkpoint(
|
||||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
||||
)
|
||||
|
||||
if f"output_blocks.{i}.0.time_mixer.mix_factor" in unet_state_dict:
|
||||
new_checkpoint[
|
||||
f"up_blocks.{block_id}.resnets.{layer_in_block_id}.time_mixer.mix_factor"
|
||||
] = unet_state_dict[f"output_blocks.{i}.0.time_mixer.mix_factor"]
|
||||
|
||||
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
|
||||
if ["conv.bias", "conv.weight"] in output_block_list.values():
|
||||
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
|
||||
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
|
||||
f"output_blocks.{i}.{index}.conv.weight"
|
||||
]
|
||||
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
|
||||
f"output_blocks.{i}.{index}.conv.bias"
|
||||
]
|
||||
|
||||
# Clear attentions as they have been attributed above.
|
||||
if len(attentions) == 2:
|
||||
attentions = []
|
||||
|
||||
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key and "conv" not in key]
|
||||
if len(attentions):
|
||||
paths = renew_attention_paths(attentions)
|
||||
# import ipdb; ipdb.set_trace()
|
||||
meta_path = {
|
||||
"old": f"output_blocks.{i}.1",
|
||||
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
|
||||
}
|
||||
assign_to_checkpoint(
|
||||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
||||
)
|
||||
else:
|
||||
spatial_layers = [
|
||||
layer for layer in output_block_layers if "time_stack" not in layer and "time_mixer" not in layer
|
||||
]
|
||||
resnet_0_paths = renew_resnet_paths(spatial_layers, n_shave_prefix_segments=1)
|
||||
# import ipdb; ipdb.set_trace()
|
||||
for path in resnet_0_paths:
|
||||
old_path = ".".join(["output_blocks", str(i), path["old"]])
|
||||
new_path = ".".join(
|
||||
["up_blocks", str(block_id), "resnets", str(layer_in_block_id), "spatial_res_block", path["new"]]
|
||||
)
|
||||
|
||||
new_checkpoint[new_path] = unet_state_dict[old_path]
|
||||
|
||||
temporal_layers = [
|
||||
layer for layer in output_block_layers if "time_stack" in layer and "time_mixer" not in key
|
||||
]
|
||||
resnet_0_paths = renew_resnet_paths(temporal_layers, n_shave_prefix_segments=1)
|
||||
# import ipdb; ipdb.set_trace()
|
||||
for path in resnet_0_paths:
|
||||
old_path = ".".join(["output_blocks", str(i), path["old"]])
|
||||
new_path = ".".join(
|
||||
["up_blocks", str(block_id), "resnets", str(layer_in_block_id), "temporal_res_block", path["new"]]
|
||||
)
|
||||
|
||||
new_checkpoint[new_path] = unet_state_dict[old_path]
|
||||
|
||||
new_checkpoint["up_blocks.0.resnets.0.time_mixer.mix_factor"] = unet_state_dict[
|
||||
f"output_blocks.{str(i)}.0.time_mixer.mix_factor"
|
||||
]
|
||||
|
||||
return new_checkpoint
|
||||
|
||||
|
||||
def conv_attn_to_linear(checkpoint):
|
||||
keys = list(checkpoint.keys())
|
||||
attn_keys = ["to_q.weight", "to_k.weight", "to_v.weight"]
|
||||
for key in keys:
|
||||
if ".".join(key.split(".")[-2:]) in attn_keys:
|
||||
if checkpoint[key].ndim > 2:
|
||||
checkpoint[key] = checkpoint[key][:, :, 0, 0]
|
||||
elif "proj_attn.weight" in key:
|
||||
if checkpoint[key].ndim > 2:
|
||||
checkpoint[key] = checkpoint[key][:, :, 0]
|
||||
|
||||
|
||||
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0, is_temporal=False):
|
||||
"""
|
||||
Updates paths inside resnets to the new naming scheme (local renaming)
|
||||
"""
|
||||
mapping = []
|
||||
for old_item in old_list:
|
||||
new_item = old_item
|
||||
|
||||
# Temporal resnet
|
||||
new_item = old_item.replace("in_layers.0", "norm1")
|
||||
new_item = new_item.replace("in_layers.2", "conv1")
|
||||
|
||||
new_item = new_item.replace("out_layers.0", "norm2")
|
||||
new_item = new_item.replace("out_layers.3", "conv2")
|
||||
|
||||
new_item = new_item.replace("skip_connection", "conv_shortcut")
|
||||
|
||||
new_item = new_item.replace("time_stack.", "temporal_res_block.")
|
||||
|
||||
# Spatial resnet
|
||||
new_item = new_item.replace("conv1", "spatial_res_block.conv1")
|
||||
new_item = new_item.replace("norm1", "spatial_res_block.norm1")
|
||||
|
||||
new_item = new_item.replace("conv2", "spatial_res_block.conv2")
|
||||
new_item = new_item.replace("norm2", "spatial_res_block.norm2")
|
||||
|
||||
new_item = new_item.replace("nin_shortcut", "spatial_res_block.conv_shortcut")
|
||||
|
||||
new_item = new_item.replace("mix_factor", "spatial_res_block.time_mixer.mix_factor")
|
||||
|
||||
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
||||
|
||||
mapping.append({"old": old_item, "new": new_item})
|
||||
|
||||
return mapping
|
||||
|
||||
|
||||
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
|
||||
"""
|
||||
Updates paths inside attentions to the new naming scheme (local renaming)
|
||||
"""
|
||||
mapping = []
|
||||
for old_item in old_list:
|
||||
new_item = old_item
|
||||
|
||||
new_item = new_item.replace("norm.weight", "group_norm.weight")
|
||||
new_item = new_item.replace("norm.bias", "group_norm.bias")
|
||||
|
||||
new_item = new_item.replace("q.weight", "to_q.weight")
|
||||
new_item = new_item.replace("q.bias", "to_q.bias")
|
||||
|
||||
new_item = new_item.replace("k.weight", "to_k.weight")
|
||||
new_item = new_item.replace("k.bias", "to_k.bias")
|
||||
|
||||
new_item = new_item.replace("v.weight", "to_v.weight")
|
||||
new_item = new_item.replace("v.bias", "to_v.bias")
|
||||
|
||||
new_item = new_item.replace("proj_out.weight", "to_out.0.weight")
|
||||
new_item = new_item.replace("proj_out.bias", "to_out.0.bias")
|
||||
|
||||
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
||||
|
||||
mapping.append({"old": old_item, "new": new_item})
|
||||
|
||||
return mapping
|
||||
|
||||
|
||||
def convert_ldm_vae_checkpoint(checkpoint, config):
|
||||
# extract state dict for VAE
|
||||
vae_state_dict = {}
|
||||
keys = list(checkpoint.keys())
|
||||
vae_key = "first_stage_model." if any(k.startswith("first_stage_model.") for k in keys) else ""
|
||||
for key in keys:
|
||||
if key.startswith(vae_key):
|
||||
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
|
||||
|
||||
new_checkpoint = {}
|
||||
|
||||
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
|
||||
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
|
||||
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
|
||||
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
|
||||
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
|
||||
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
|
||||
|
||||
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
|
||||
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
|
||||
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
|
||||
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
|
||||
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
|
||||
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
|
||||
new_checkpoint["decoder.time_conv_out.weight"] = vae_state_dict["decoder.time_mix_conv.weight"]
|
||||
new_checkpoint["decoder.time_conv_out.bias"] = vae_state_dict["decoder.time_mix_conv.bias"]
|
||||
|
||||
# new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
|
||||
# new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
|
||||
# new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
|
||||
# new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
|
||||
|
||||
# Retrieves the keys for the encoder down blocks only
|
||||
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
|
||||
down_blocks = {
|
||||
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
|
||||
}
|
||||
|
||||
# Retrieves the keys for the decoder up blocks only
|
||||
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
|
||||
up_blocks = {
|
||||
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
|
||||
}
|
||||
|
||||
for i in range(num_down_blocks):
|
||||
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
|
||||
|
||||
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
|
||||
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
|
||||
f"encoder.down.{i}.downsample.conv.weight"
|
||||
)
|
||||
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
|
||||
f"encoder.down.{i}.downsample.conv.bias"
|
||||
)
|
||||
|
||||
paths = renew_vae_resnet_paths(resnets)
|
||||
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
|
||||
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
||||
|
||||
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
|
||||
num_mid_res_blocks = 2
|
||||
for i in range(1, num_mid_res_blocks + 1):
|
||||
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
|
||||
|
||||
paths = renew_vae_resnet_paths(resnets)
|
||||
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
||||
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
||||
|
||||
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
|
||||
paths = renew_vae_attention_paths(mid_attentions)
|
||||
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
||||
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
||||
conv_attn_to_linear(new_checkpoint)
|
||||
|
||||
for i in range(num_up_blocks):
|
||||
block_id = num_up_blocks - 1 - i
|
||||
|
||||
resnets = [
|
||||
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
|
||||
]
|
||||
|
||||
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
|
||||
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
|
||||
f"decoder.up.{block_id}.upsample.conv.weight"
|
||||
]
|
||||
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
|
||||
f"decoder.up.{block_id}.upsample.conv.bias"
|
||||
]
|
||||
|
||||
paths = renew_vae_resnet_paths(resnets)
|
||||
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
|
||||
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
||||
|
||||
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
|
||||
num_mid_res_blocks = 2
|
||||
for i in range(1, num_mid_res_blocks + 1):
|
||||
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
|
||||
|
||||
paths = renew_vae_resnet_paths(resnets)
|
||||
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
||||
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
||||
|
||||
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
|
||||
paths = renew_vae_attention_paths(mid_attentions)
|
||||
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
||||
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
||||
conv_attn_to_linear(new_checkpoint)
|
||||
return new_checkpoint
|
||||
Reference in New Issue
Block a user