diff --git a/examples/unconditional_image_generation/train_unconditional.py b/examples/unconditional_image_generation/train_unconditional.py index 0d77c66712..b3a80df182 100644 --- a/examples/unconditional_image_generation/train_unconditional.py +++ b/examples/unconditional_image_generation/train_unconditional.py @@ -23,7 +23,7 @@ import diffusers from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel from diffusers.optimization import get_scheduler from diffusers.training_utils import EMAModel -from diffusers.utils import check_min_version, is_tensorboard_available, is_wandb_available +from diffusers.utils import check_min_version, is_accelerate_version, is_tensorboard_available, is_wandb_available # Will error if the minimal version of diffusers is not installed. Remove at your own risks. @@ -628,10 +628,13 @@ def main(args): images_processed = (images * 255).round().astype("uint8") if args.logger == "tensorboard": - accelerator.get_tracker("tensorboard").add_images( - "test_samples", images_processed.transpose(0, 3, 1, 2), epoch - ) + if is_accelerate_version(">=", "0.17.0.dev0"): + tracker = accelerator.get_tracker("tensorboard", unwrap=True) + else: + tracker = accelerator.get_tracker() + tracker.add_images("test_samples", images_processed.transpose(0, 3, 1, 2), epoch) elif args.logger == "wandb": + # Upcoming `log_images` helper coming in https://github.com/huggingface/accelerate/pull/962/files accelerator.get_tracker("wandb").log( {"test_samples": [wandb.Image(img) for img in images_processed], "epoch": epoch}, step=global_step,