diff --git a/src/diffusers/pipelines/glide/pipeline_glide.py b/src/diffusers/pipelines/glide/pipeline_glide.py index 8d7a75f542..5ba28d87db 100644 --- a/src/diffusers/pipelines/glide/pipeline_glide.py +++ b/src/diffusers/pipelines/glide/pipeline_glide.py @@ -817,7 +817,7 @@ class GlidePipeline(DiffusionPipeline): num_trained_timesteps = self.upscale_scheduler.timesteps inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps_upscale) - for t in tqdm.tqdm(reversed(range(num_inference_steps_upscale)), total=num_inference_steps_upscale): + for t in tqdm(reversed(range(num_inference_steps_upscale)), total=num_inference_steps_upscale): # 1. predict noise residual with torch.no_grad(): time_input = torch.tensor([inference_step_times[t]] * image.shape[0], device=torch_device) diff --git a/src/diffusers/pipelines/pndm/pipeline_pndm.py b/src/diffusers/pipelines/pndm/pipeline_pndm.py index 27f4770490..29d24fdc82 100644 --- a/src/diffusers/pipelines/pndm/pipeline_pndm.py +++ b/src/diffusers/pipelines/pndm/pipeline_pndm.py @@ -53,7 +53,7 @@ class PNDMPipeline(DiffusionPipeline): image = self.scheduler.step_prk(model_output, t, image, num_inference_steps)["prev_sample"] timesteps = self.scheduler.get_time_steps(num_inference_steps) - for t in tqdm.tqdm(range(len(timesteps))): + for t in tqdm(range(len(timesteps))): t_orig = timesteps[t] model_output = self.unet(image, t_orig)