diff --git a/.github/workflows/push_tests_fast.yml b/.github/workflows/push_tests_fast.yml
index 6ea873d0a7..2f69b00af9 100644
--- a/.github/workflows/push_tests_fast.yml
+++ b/.github/workflows/push_tests_fast.yml
@@ -98,6 +98,7 @@ jobs:
- name: Run example PyTorch CPU tests
if: ${{ matrix.config.framework == 'pytorch_examples' }}
run: |
+ python -m pip install peft
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
--make-reports=tests_${{ matrix.config.report }} \
examples
diff --git a/docs/source/en/_toctree.yml b/docs/source/en/_toctree.yml
index 62588bf4ab..3e9e83e651 100644
--- a/docs/source/en/_toctree.yml
+++ b/docs/source/en/_toctree.yml
@@ -244,6 +244,8 @@
- sections:
- local: api/pipelines/overview
title: Overview
+ - local: api/pipelines/amused
+ title: aMUSEd
- local: api/pipelines/animatediff
title: AnimateDiff
- local: api/pipelines/attend_and_excite
diff --git a/docs/source/en/api/pipelines/amused.md b/docs/source/en/api/pipelines/amused.md
new file mode 100644
index 0000000000..cb86938021
--- /dev/null
+++ b/docs/source/en/api/pipelines/amused.md
@@ -0,0 +1,30 @@
+
+
+# aMUSEd
+
+Amused is a lightweight text to image model based off of the [muse](https://arxiv.org/pdf/2301.00704.pdf) architecture. Amused is particularly useful in applications that require a lightweight and fast model such as generating many images quickly at once.
+
+Amused is a vqvae token based transformer that can generate an image in fewer forward passes than many diffusion models. In contrast with muse, it uses the smaller text encoder CLIP-L/14 instead of t5-xxl. Due to its small parameter count and few forward pass generation process, amused can generate many images quickly. This benefit is seen particularly at larger batch sizes.
+
+| Model | Params |
+|-------|--------|
+| [amused-256](https://huggingface.co/huggingface/amused-256) | 603M |
+| [amused-512](https://huggingface.co/huggingface/amused-512) | 608M |
+
+## AmusedPipeline
+
+[[autodoc]] AmusedPipeline
+ - __call__
+ - all
+ - enable_xformers_memory_efficient_attention
+ - disable_xformers_memory_efficient_attention
\ No newline at end of file
diff --git a/docs/source/en/api/pipelines/stable_diffusion/ldm3d_diffusion.md b/docs/source/en/api/pipelines/stable_diffusion/ldm3d_diffusion.md
index b2dc7b7357..45900b3f11 100644
--- a/docs/source/en/api/pipelines/stable_diffusion/ldm3d_diffusion.md
+++ b/docs/source/en/api/pipelines/stable_diffusion/ldm3d_diffusion.md
@@ -31,14 +31,14 @@ Make sure to check out the Stable Diffusion [Tips](overview#tips) section to lea
## StableDiffusionLDM3DPipeline
-[[autodoc]] pipelines.stable_diffusion.pipeline_stable_diffusion_ldm3d.StableDiffusionLDM3DPipeline
+[[autodoc]] pipelines.stable_diffusion_ldm3d.pipeline_stable_diffusion_ldm3d.StableDiffusionLDM3DPipeline
- all
- __call__
## LDM3DPipelineOutput
-[[autodoc]] pipelines.stable_diffusion.pipeline_stable_diffusion_ldm3d.LDM3DPipelineOutput
+[[autodoc]] pipelines.stable_diffusion_ldm3d.pipeline_stable_diffusion_ldm3d.LDM3DPipelineOutput
- all
- __call__
diff --git a/docs/source/en/using-diffusers/controlnet.md b/docs/source/en/using-diffusers/controlnet.md
index c50d2e96e8..e7f6eb2756 100644
--- a/docs/source/en/using-diffusers/controlnet.md
+++ b/docs/source/en/using-diffusers/controlnet.md
@@ -203,7 +203,7 @@ def make_inpaint_condition(image, image_mask):
image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
assert image.shape[0:1] == image_mask.shape[0:1]
- image[image_mask > 0.5] = 1.0 # set as masked pixel
+ image[image_mask > 0.5] = -1.0 # set as masked pixel
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return image
diff --git a/docs/source/en/using-diffusers/reusing_seeds.md b/docs/source/en/using-diffusers/reusing_seeds.md
index d2638b469e..6d0f6ac983 100644
--- a/docs/source/en/using-diffusers/reusing_seeds.md
+++ b/docs/source/en/using-diffusers/reusing_seeds.md
@@ -41,6 +41,20 @@ Now, define four different `Generator`s and assign each `Generator` a seed (`0`
generator = [torch.Generator(device="cuda").manual_seed(i) for i in range(4)]
```
+
+
+To create a batched seed, you should use a list comprehension that iterates over the length specified in `range()`. This creates a unique `Generator` object for each image in the batch. If you only multiply the `Generator` by the batch size, this only creates one `Generator` object that is used sequentially for each image in the batch.
+
+For example, if you want to use the same seed to create 4 identical images:
+
+```py
+❌ [torch.Generator().manual_seed(seed)] * 4
+
+✅ [torch.Generator().manual_seed(seed) for _ in range(4)]
+```
+
+
+
Generate the images and have a look:
```python
diff --git a/examples/amused/README.md b/examples/amused/README.md
new file mode 100644
index 0000000000..517c2d382f
--- /dev/null
+++ b/examples/amused/README.md
@@ -0,0 +1,326 @@
+## Amused training
+
+Amused can be finetuned on simple datasets relatively cheaply and quickly. Using 8bit optimizers, lora, and gradient accumulation, amused can be finetuned with as little as 5.5 GB. Here are a set of examples for finetuning amused on some relatively simple datasets. These training recipies are aggressively oriented towards minimal resources and fast verification -- i.e. the batch sizes are quite low and the learning rates are quite high. For optimal quality, you will probably want to increase the batch sizes and decrease learning rates.
+
+All training examples use fp16 mixed precision and gradient checkpointing. We don't show 8 bit adam + lora as its about the same memory use as just using lora (bitsandbytes uses full precision optimizer states for weights below a minimum size).
+
+### Finetuning the 256 checkpoint
+
+These examples finetune on this [nouns](https://huggingface.co/datasets/m1guelpf/nouns) dataset.
+
+Example results:
+
+  
+
+
+#### Full finetuning
+
+Batch size: 8, Learning rate: 1e-4, Gives decent results in 750-1000 steps
+
+| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
+|------------|-----------------------------|------------------|-------------|
+| 8 | 1 | 8 | 19.7 GB |
+| 4 | 2 | 8 | 18.3 GB |
+| 1 | 8 | 8 | 17.9 GB |
+
+```sh
+accelerate launch train_amused.py \
+ --output_dir