diff --git a/src/diffusers/schedulers/scheduling_ddim.py b/src/diffusers/schedulers/scheduling_ddim.py index a49b279daa..6df8c09051 100644 --- a/src/diffusers/schedulers/scheduling_ddim.py +++ b/src/diffusers/schedulers/scheduling_ddim.py @@ -30,7 +30,7 @@ from .scheduling_utils import SchedulerMixin def expand_to_shape(input, timesteps, shape, device): """ Helper indexes a 1D tensor `input` using a 1D index tensor `timesteps`, then reshapes the result to broadcast - nicely with `shape`. Useful for parellizing operations over `shape[0]` number of diffusion steps at once. + nicely with `shape`. Useful for parallelizing operations over `shape[0]` number of diffusion steps at once. """ out = torch.gather(input.to(device), 0, timesteps.to(device)) reshape = [shape[0]] + [1] * (len(shape) - 1) @@ -131,7 +131,7 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin): stable diffusion. prediction_type (`Literal["epsilon", "sample", "velocity"]`, optional): prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion - process), `sample` (directly predicting the noisy sample`) or `v` (see section 2.4 + process), `sample` (directly predicting the noisy sample`) or `velocity` (see section 2.4 https://imagen.research.google/video/paper.pdf) """ @@ -265,10 +265,6 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin): timestep (`int`): current discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. - prediction_type (`str`): - prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion - process), `sample` (directly predicting the noisy sample), or `v` (see section 2.4 - https://imagen.research.google/video/paper.pdf) eta (`float`): weight of noise for added noise in diffusion step. use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when @@ -326,7 +322,7 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin): eps = model_output * self.alphas[timestep] + sample * self.sigmas[timestep] else: raise ValueError( - f"prediction_type given as {self.prediction_type} must be one of `epsilon`, `sample`, or `v`" + f"prediction_type given as {self.prediction_type} must be one of `epsilon`, `sample`, or `velocity`" ) # 4. Clip "predicted x_0" diff --git a/src/diffusers/schedulers/scheduling_ddpm.py b/src/diffusers/schedulers/scheduling_ddpm.py index e6c204cf63..ed0371e95f 100644 --- a/src/diffusers/schedulers/scheduling_ddpm.py +++ b/src/diffusers/schedulers/scheduling_ddpm.py @@ -29,7 +29,7 @@ from .scheduling_utils import SchedulerMixin def expand_to_shape(input, timesteps, shape, device): """ Helper indexes a 1D tensor `input` using a 1D index tensor `timesteps`, then reshapes the result to broadcast - nicely with `shape`. Useful for parellizing operations over `shape[0]` number of diffusion steps at once. + nicely with `shape`. Useful for parallelizing operations over `shape[0]` number of diffusion steps at once. """ out = torch.gather(input.to(device), 0, timesteps.to(device)) reshape = [shape[0]] + [1] * (len(shape) - 1) @@ -112,7 +112,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin): option to clip predicted sample between -1 and 1 for numerical stability. prediction_type (`Literal["epsilon", "sample", "velocity"]`, optional): prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion - process), `sample` (directly predicting the noisy sample`) or `v` (see section 2.4 + process), `sample` (directly predicting the noisy sample`) or `velocity` (see section 2.4 https://imagen.research.google/video/paper.pdf) predict_epsilon (`bool`, default `True`): depreciated flag (removing v0.10.0) for epsilon vs. direct sample prediction. @@ -300,7 +300,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin): else: raise ValueError( - f"prediction_type given as {self.prediction_type} must be one of `epsilon`, `sample`, or `v`" + f"prediction_type given as {self.prediction_type} must be one of `epsilon`, `sample`, or `velocity`" ) # 3. Clip "predicted x_0"