From 168e5b7ffa4949fca82ed2fcd17d3451c5804401 Mon Sep 17 00:00:00 2001 From: Patrick von Platen Date: Mon, 27 Jun 2022 09:23:10 +0000 Subject: [PATCH] add embeddings --- src/diffusers/models/embeddings.py | 80 ++++++++++++++++++++++++++++++ 1 file changed, 80 insertions(+) diff --git a/src/diffusers/models/embeddings.py b/src/diffusers/models/embeddings.py index 333aeb85d5..704f72f9b6 100644 --- a/src/diffusers/models/embeddings.py +++ b/src/diffusers/models/embeddings.py @@ -54,3 +54,83 @@ def timestep_embedding(timesteps, dim, max_period=10000): if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding + +# unet_grad_tts.py +class SinusoidalPosEmb(torch.nn.Module): + def __init__(self, dim): + super(SinusoidalPosEmb, self).__init__() + self.dim = dim + + def forward(self, x, scale=1000): + device = x.device + half_dim = self.dim // 2 + emb = math.log(10000) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb) + emb = scale * x.unsqueeze(1) * emb.unsqueeze(0) + emb = torch.cat((emb.sin(), emb.cos()), dim=-1) + return emb + +# unet_ldm.py +def timestep_embedding(timesteps, dim, max_period=10000): + """ + Create sinusoidal timestep embeddings. + + :param timesteps: a 1-D Tensor of N indices, one per batch element. + These may be fractional. + :param dim: the dimension of the output. + :param max_period: controls the minimum frequency of the embeddings. + :return: an [N x dim] Tensor of positional embeddings. + """ + half = dim // 2 + freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to( + device=timesteps.device + ) + args = timesteps[:, None].float() * freqs[None] + embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) + if dim % 2: + embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) + return embedding + +# unet_rl.py +class SinusoidalPosEmb(nn.Module): + def __init__(self, dim): + super().__init__() + self.dim = dim + + def forward(self, x): + device = x.device + half_dim = self.dim // 2 + emb = math.log(10000) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, device=device) * -emb) + emb = x[:, None] * emb[None, :] + emb = torch.cat((emb.sin(), emb.cos()), dim=-1) + return emb + +# unet_sde_score_estimation.py +def get_timestep_embedding(timesteps, embedding_dim, max_positions=10000): + assert len(timesteps.shape) == 1 # and timesteps.dtype == tf.int32 + half_dim = embedding_dim // 2 + # magic number 10000 is from transformers + emb = math.log(max_positions) / (half_dim - 1) + # emb = math.log(2.) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=torch.float32, device=timesteps.device) * -emb) + # emb = tf.range(num_embeddings, dtype=jnp.float32)[:, None] * emb[None, :] + # emb = tf.cast(timesteps, dtype=jnp.float32)[:, None] * emb[None, :] + emb = timesteps.float()[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: # zero pad + emb = F.pad(emb, (0, 1), mode="constant") + assert emb.shape == (timesteps.shape[0], embedding_dim) + return emb + +# unet_sde_score_estimation.py +class GaussianFourierProjection(nn.Module): + """Gaussian Fourier embeddings for noise levels.""" + + def __init__(self, embedding_size=256, scale=1.0): + super().__init__() + self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False) + + def forward(self, x): + x_proj = x[:, None] * self.W[None, :] * 2 * np.pi + return torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)