From 0c2f1ccc977ef858e3fe48652107ecab5bfb1eb5 Mon Sep 17 00:00:00 2001 From: Patrick von Platen Date: Thu, 14 Sep 2023 11:42:10 +0200 Subject: [PATCH] [Import] Don't force transformers to be installed (#5035) * [Import] Don't force transformers to be installed * make style --- src/diffusers/loaders.py | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/src/diffusers/loaders.py b/src/diffusers/loaders.py index 16eabb0077..a619c19b77 100644 --- a/src/diffusers/loaders.py +++ b/src/diffusers/loaders.py @@ -41,7 +41,7 @@ from .utils.import_utils import BACKENDS_MAPPING if is_transformers_available(): - from transformers import CLIPTextModel, CLIPTextModelWithProjection, PreTrainedModel, PreTrainedTokenizer + from transformers import CLIPTextModel, CLIPTextModelWithProjection if is_accelerate_available(): from accelerate import init_empty_weights @@ -627,7 +627,7 @@ class TextualInversionLoaderMixin: Load textual inversion tokens and embeddings to the tokenizer and text encoder. """ - def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"): + def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"): # noqa: F821 r""" Processes prompts that include a special token corresponding to a multi-vector textual inversion embedding to be replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual @@ -654,7 +654,7 @@ class TextualInversionLoaderMixin: return prompts - def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"): + def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"): # noqa: F821 r""" Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds to a multi-vector textual inversion embedding, this function will process the prompt so that the special token @@ -688,8 +688,8 @@ class TextualInversionLoaderMixin: self, pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]], token: Optional[Union[str, List[str]]] = None, - tokenizer: Optional[PreTrainedTokenizer] = None, - text_encoder: Optional[PreTrainedModel] = None, + tokenizer: Optional["PreTrainedTokenizer"] = None, # noqa: F821 + text_encoder: Optional["PreTrainedModel"] = None, # noqa: F821 **kwargs, ): r"""