mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Create control_lora.py
This commit is contained in:
53
examples/research_projects/control_lora/control_lora.py
Normal file
53
examples/research_projects/control_lora/control_lora.py
Normal file
@@ -0,0 +1,53 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
import torch
|
||||
|
||||
from diffusers import (
|
||||
StableDiffusionXLControlNetPipeline,
|
||||
ControlNetModel,
|
||||
UNet2DConditionModel,
|
||||
)
|
||||
from diffusers import AutoencoderKL
|
||||
from diffusers.utils import load_image, make_image_grid
|
||||
|
||||
pipe_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||
lora_id = "stabilityai/control-lora"
|
||||
lora_filename = "control-LoRAs-rank128/control-lora-canny-rank128.safetensors"
|
||||
|
||||
unet = UNet2DConditionModel.from_pretrained(pipe_id, subfolder="unet", torch_dtype=torch.bfloat16).to("cuda")
|
||||
controlnet = ControlNetModel.from_unet(unet).to(device="cuda", dtype=torch.bfloat16)
|
||||
controlnet.load_lora_adapter(lora_id, weight_name=lora_filename, prefix=None, controlnet_config=controlnet.config)
|
||||
|
||||
prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
|
||||
negative_prompt = "low quality, bad quality, sketches"
|
||||
|
||||
image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png")
|
||||
|
||||
controlnet_conditioning_scale = 1.0 # recommended for good generalization
|
||||
|
||||
vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", torch_dtype=torch.bfloat16)
|
||||
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
||||
pipe_id,
|
||||
unet=unet,
|
||||
controlnet=controlnet,
|
||||
vae=vae,
|
||||
torch_dtype=torch.bfloat16,
|
||||
safety_checker=None,
|
||||
).to("cuda")
|
||||
|
||||
image = np.array(image)
|
||||
image = cv2.Canny(image, 100, 200)
|
||||
image = image[:, :, None]
|
||||
image = np.concatenate([image, image, image], axis=2)
|
||||
image = Image.fromarray(image)
|
||||
|
||||
images = pipe(
|
||||
prompt, negative_prompt=negative_prompt, image=image,
|
||||
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
||||
num_images_per_prompt=4
|
||||
).images
|
||||
|
||||
final_image = [image] + images
|
||||
grid = make_image_grid(final_image, 1, 5)
|
||||
grid.save("hf-logo_canny.png")
|
||||
Reference in New Issue
Block a user