1
0
mirror of https://github.com/kijai/ComfyUI-WanVideoWrapper.git synced 2026-01-28 12:20:55 +03:00
Files
ComfyUI-WanVideoWrapper/utils.py
kijai 296baa30ce Add WanVideoSetLoRAs
Node to set the LoRA weights to use with the unmerged LoRA mode, not able to merge LoRAs but allows instant LoRA switching without any loading times. The effect of unmerged LoRAs is stronger and differs from merged LoRAs.
2025-07-21 22:39:17 +03:00

304 lines
12 KiB
Python

import importlib.metadata
import torch
import logging
from tqdm import tqdm
import types
from comfy.utils import ProgressBar, copy_to_param, set_attr_param
from comfy.model_patcher import get_key_weight, string_to_seed
from comfy.lora import calculate_weight
from comfy.model_management import cast_to_device
from comfy.float import stochastic_rounding
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
log = logging.getLogger(__name__)
from accelerate.utils import set_module_tensor_to_device
def check_diffusers_version():
try:
version = importlib.metadata.version('diffusers')
required_version = '0.31.0'
if version < required_version:
raise AssertionError(f"diffusers version {version} is installed, but version {required_version} or higher is required.")
except importlib.metadata.PackageNotFoundError:
raise AssertionError("diffusers is not installed.")
def print_memory(device):
memory = torch.cuda.memory_allocated(device) / 1024**3
max_memory = torch.cuda.max_memory_allocated(device) / 1024**3
max_reserved = torch.cuda.max_memory_reserved(device) / 1024**3
log.info(f"Allocated memory: {memory=:.3f} GB")
log.info(f"Max allocated memory: {max_memory=:.3f} GB")
log.info(f"Max reserved memory: {max_reserved=:.3f} GB")
#memory_summary = torch.cuda.memory_summary(device=device, abbreviated=False)
#log.info(f"Memory Summary:\n{memory_summary}")
def get_module_memory_mb(module):
memory = 0
for param in module.parameters():
if param.data is not None:
memory += param.nelement() * param.element_size()
return memory / (1024 * 1024) # Convert to MB
def get_tensor_memory(tensor):
memory_bytes = tensor.element_size() * tensor.nelement()
return f"{memory_bytes / (1024 * 1024):.2f} MB"
def patch_weight_to_device(self, key, device_to=None, inplace_update=False):
if key not in self.patches:
return
weight, set_func, convert_func = get_key_weight(self.model, key)
inplace_update = self.weight_inplace_update or inplace_update
if device_to is not None:
temp_weight = cast_to_device(weight, device_to, torch.float32, copy=True)
else:
temp_weight = weight.to(torch.float32, copy=True)
if convert_func is not None:
temp_weight = convert_func(temp_weight, inplace=True)
out_weight = calculate_weight(self.patches[key], temp_weight, key)
if set_func is None:
out_weight = stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key))
if inplace_update:
copy_to_param(self.model, key, out_weight)
else:
set_attr_param(self.model, key, out_weight)
else:
set_func(out_weight, inplace_update=inplace_update, seed=string_to_seed(key))
def apply_lora(model, device_to, transformer_load_device, params_to_keep=None, dtype=None, base_dtype=None, state_dict=None, low_mem_load=False):
model.patch_weight_to_device = types.MethodType(patch_weight_to_device, model)
to_load = []
for n, m in model.model.named_modules():
params = []
skip = False
for name, param in m.named_parameters(recurse=False):
params.append(name)
for name, param in m.named_parameters(recurse=True):
if name not in params:
skip = True # skip random weights in non leaf modules
break
if not skip and (hasattr(m, "comfy_cast_weights") or len(params) > 0):
to_load.append((n, m, params))
to_load.sort(reverse=True)
pbar = ProgressBar(len(to_load))
for x in tqdm(to_load, desc="Loading model and applying LoRA weights:", leave=True):
name = x[0]
m = x[1]
params = x[2]
if hasattr(m, "comfy_patched_weights"):
if m.comfy_patched_weights == True:
continue
for param in params:
name = name.replace("._orig_mod.", ".") # torch compiled modules have this prefix
if low_mem_load:
dtype_to_use = base_dtype if any(keyword in name for keyword in params_to_keep) else dtype
if "patch_embedding" in name:
dtype_to_use = torch.float32
if name.startswith("diffusion_model."):
name_no_prefix = name[len("diffusion_model."):]
key = "{}.{}".format(name_no_prefix, param)
try:
set_module_tensor_to_device(model.model.diffusion_model, key, device=transformer_load_device, dtype=dtype_to_use, value=state_dict[key])
except:
continue
if low_mem_load:
model.patch_weight_to_device("{}.{}".format(name, param), device_to=device_to, inplace_update=True)
else:
model.patch_weight_to_device("{}.{}".format(name, param), device_to=device_to)
model.backup["{}.{}".format(name, param)] = None
if device_to != transformer_load_device:
set_module_tensor_to_device(m, param, device=transformer_load_device)
if low_mem_load:
try:
set_module_tensor_to_device(model.model.diffusion_model, key, device=transformer_load_device, dtype=dtype_to_use, value=model.model.diffusion_model.state_dict()[key])
except:
continue
m.comfy_patched_weights = True
pbar.update(1)
model.current_weight_patches_uuid = model.patches_uuid
if low_mem_load:
for name, param in model.model.diffusion_model.named_parameters():
if param.device != transformer_load_device:
dtype_to_use = base_dtype if any(keyword in name for keyword in params_to_keep) else dtype
if "patch_embedding" in name:
dtype_to_use = torch.float32
try:
set_module_tensor_to_device(model.model.diffusion_model, name, device=transformer_load_device, dtype=dtype_to_use, value=state_dict[name])
except:
continue
return model
# from https://github.com/cubiq/ComfyUI_IPAdapter_plus/blob/9d076a3df0d2763cef5510ec5ab807f6632c39f5/utils.py#L181
def split_tiles(embeds, num_split):
_, H, W, _ = embeds.shape
out = []
for x in embeds:
x = x.unsqueeze(0)
h, w = H // num_split, W // num_split
x_split = torch.cat([x[:, i*h:(i+1)*h, j*w:(j+1)*w, :] for i in range(num_split) for j in range(num_split)], dim=0)
out.append(x_split)
x_split = torch.stack(out, dim=0)
return x_split
def merge_hiddenstates(x, tiles):
chunk_size = tiles*tiles
x = x.split(chunk_size)
out = []
for embeds in x:
num_tiles = embeds.shape[0]
tile_size = int((embeds.shape[1]-1) ** 0.5)
grid_size = int(num_tiles ** 0.5)
# Extract class tokens
class_tokens = embeds[:, 0, :] # Save class tokens: [num_tiles, embeds[-1]]
avg_class_token = class_tokens.mean(dim=0, keepdim=True).unsqueeze(0) # Average token, shape: [1, 1, embeds[-1]]
patch_embeds = embeds[:, 1:, :] # Shape: [num_tiles, tile_size^2, embeds[-1]]
reshaped = patch_embeds.reshape(grid_size, grid_size, tile_size, tile_size, embeds.shape[-1])
merged = torch.cat([torch.cat([reshaped[i, j] for j in range(grid_size)], dim=1)
for i in range(grid_size)], dim=0)
merged = merged.unsqueeze(0) # Shape: [1, grid_size*tile_size, grid_size*tile_size, embeds[-1]]
# Pool to original size
pooled = torch.nn.functional.adaptive_avg_pool2d(merged.permute(0, 3, 1, 2), (tile_size, tile_size)).permute(0, 2, 3, 1)
flattened = pooled.reshape(1, tile_size*tile_size, embeds.shape[-1])
# Add back the class token
with_class = torch.cat([avg_class_token, flattened], dim=1) # Shape: original shape
out.append(with_class)
out = torch.cat(out, dim=0)
return out
from comfy.clip_vision import clip_preprocess, ClipVisionModel
def clip_encode_image_tiled(clip_vision, image, tiles=1, ratio=1.0):
embeds = encode_image_(clip_vision, image)
tiles = min(tiles, 16)
if tiles > 1:
# split in tiles
image_split = split_tiles(image, tiles)
# get the embeds for each tile
embeds_split = {}
for i in image_split:
encoded = encode_image_(clip_vision, i)
if not hasattr(embeds_split, "last_hidden_state"):
embeds_split["last_hidden_state"] = encoded
else:
embeds_split["last_hidden_state"] = torch.cat(embeds_split["last_hidden_state"], encoded, dim=0)
embeds_split['last_hidden_state'] = merge_hiddenstates(embeds_split['last_hidden_state'], tiles)
if embeds.shape[0] > 1: # if we have more than one image we need to average the embeddings for consistency
embeds = embeds * ratio + embeds_split['last_hidden_state']*(1-ratio)
else: # otherwise we can concatenate them, they can be averaged later
embeds = torch.cat([embeds * ratio, embeds_split['last_hidden_state']])
return embeds
def encode_image_(clip_vision, image):
if isinstance(clip_vision, ClipVisionModel):
out = clip_vision.encode_image(image).last_hidden_state
else:
pixel_values = clip_preprocess(image, size=224, crop=True).float()
out = clip_vision.visual(pixel_values)
return out
# Code based on https://github.com/WikiChao/FreSca (MIT License)
import torch
import torch.fft as fft
def fourier_filter(x, scale_low=1.0, scale_high=1.5, freq_cutoff=20):
"""
Apply frequency-dependent scaling to an image tensor using Fourier transforms.
Parameters:
x: Input tensor of shape (B, C, H, W)
scale_low: Scaling factor for low-frequency components (default: 1.0)
scale_high: Scaling factor for high-frequency components (default: 1.5)
freq_cutoff: Number of frequency indices around center to consider as low-frequency (default: 20)
Returns:
x_filtered: Filtered version of x in spatial domain with frequency-specific scaling applied.
"""
# Preserve input dtype and device
dtype, device = x.dtype, x.device
# Convert to float32 for FFT computations
x = x.to(torch.float32)
# 1) Apply FFT and shift low frequencies to center
x_freq = fft.fftn(x, dim=(-2, -1))
x_freq = fft.fftshift(x_freq, dim=(-2, -1))
# 2) Create a mask to scale frequencies differently
C, B, H, W = x_freq.shape
crow, ccol = H // 2, W // 2
# Initialize mask with high-frequency scaling factor
mask = torch.ones((C, B, H, W), device=device) * scale_high
# Apply low-frequency scaling factor to center region
mask[
...,
crow - freq_cutoff : crow + freq_cutoff,
ccol - freq_cutoff : ccol + freq_cutoff,
] = scale_low
# 3) Apply frequency-specific scaling
x_freq = x_freq * mask
# 4) Convert back to spatial domain
x_freq = fft.ifftshift(x_freq, dim=(-2, -1))
x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real
# 5) Restore original dtype
x_filtered = x_filtered.to(dtype)
return x_filtered
def is_image_black(image, threshold=1e-3):
if image.min() < 0:
image = (image + 1) / 2
return torch.all(image < threshold).item()
def add_noise_to_reference_video(image, ratio=None):
sigma = torch.ones((image.shape[0],)).to(image.device, image.dtype) * ratio
image_noise = torch.randn_like(image) * sigma[:, None, None, None]
image_noise = torch.where(image==-1, torch.zeros_like(image), image_noise)
image = image + image_noise
return image
def optimized_scale(positive_flat, negative_flat):
# Calculate dot production
dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True)
# Squared norm of uncondition
squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8
# st_star = v_cond^T * v_uncond / ||v_uncond||^2
st_star = dot_product / squared_norm
return st_star
def find_closest_valid_dim(fixed_dim, var_dim, block_size):
for delta in range(1, 17):
for sign in [-1, 1]:
candidate = var_dim + sign * delta
if candidate > 0 and ((fixed_dim * candidate) // 4) % block_size == 0:
return candidate
return var_dim