1
0
mirror of https://github.com/kijai/ComfyUI-WanVideoWrapper.git synced 2026-01-28 12:20:55 +03:00
Files
ComfyUI-WanVideoWrapper/nodes_model_loading.py
2025-07-23 17:58:28 +03:00

1481 lines
69 KiB
Python

import torch
import os, gc, uuid
from .utils import log, apply_lora
import numpy as np
from tqdm import tqdm
from .wanvideo.modules.model import WanModel
from .wanvideo.modules.t5 import T5EncoderModel
from .wanvideo.modules.clip import CLIPModel
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
from .fp8_optimization import convert_linear_with_lora_and_scale
import folder_paths
import comfy.model_management as mm
from comfy.utils import load_torch_file, ProgressBar
import comfy.model_base
from comfy.sd import load_lora_for_models
script_directory = os.path.dirname(os.path.abspath(__file__))
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
try:
from server import PromptServer
except:
PromptServer = None
#from city96's gguf nodes
def update_folder_names_and_paths(key, targets=[]):
# check for existing key
base = folder_paths.folder_names_and_paths.get(key, ([], {}))
base = base[0] if isinstance(base[0], (list, set, tuple)) else []
# find base key & add w/ fallback, sanity check + warning
target = next((x for x in targets if x in folder_paths.folder_names_and_paths), targets[0])
orig, _ = folder_paths.folder_names_and_paths.get(target, ([], {}))
folder_paths.folder_names_and_paths[key] = (orig or base, {".gguf"})
if base and base != orig:
log.warning(f"Unknown file list already present on key {key}: {base}")
update_folder_names_and_paths("unet_gguf", ["diffusion_models", "unet"])
class WanVideoModel(comfy.model_base.BaseModel):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.pipeline = {}
def __getitem__(self, k):
return self.pipeline[k]
def __setitem__(self, k, v):
self.pipeline[k] = v
try:
from comfy.latent_formats import Wan21
latent_format = Wan21
except: #for backwards compatibility
log.warning("Wan21 latent format not found, update ComfyUI for better livepreview")
from comfy.latent_formats import HunyuanVideo
latent_format = HunyuanVideo
class WanVideoModelConfig:
def __init__(self, dtype):
self.unet_config = {}
self.unet_extra_config = {}
self.latent_format = latent_format
self.latent_format.latent_channels = 16
self.manual_cast_dtype = dtype
self.sampling_settings = {"multiplier": 1.0}
self.memory_usage_factor = 2.0
self.unet_config["disable_unet_model_creation"] = True
def filter_state_dict_by_blocks(state_dict, blocks_mapping, layer_filter=[]):
filtered_dict = {}
if isinstance(layer_filter, str):
layer_filters = [layer_filter] if layer_filter else []
else:
# Filter out empty strings
layer_filters = [f for f in layer_filter if f] if layer_filter else []
#print("layer_filter: ", layer_filters)
for key in state_dict:
if not any(filter_str in key for filter_str in layer_filters):
if 'blocks.' in key:
block_pattern = key.split('diffusion_model.')[1].split('.', 2)[0:2]
block_key = f'{block_pattern[0]}.{block_pattern[1]}.'
if block_key in blocks_mapping:
filtered_dict[key] = state_dict[key]
else:
filtered_dict[key] = state_dict[key]
for key in filtered_dict:
print(key)
#from safetensors.torch import save_file
#save_file(filtered_dict, "filtered_state_dict_2.safetensors")
return filtered_dict
def standardize_lora_key_format(lora_sd):
new_sd = {}
for k, v in lora_sd.items():
# Diffusers format
if k.startswith('transformer.'):
k = k.replace('transformer.', 'diffusion_model.')
if k.startswith('pipe.dit.'): #unianimate-dit/diffsynth
k = k.replace('pipe.dit.', 'diffusion_model.')
if k.startswith('blocks.'):
k = k.replace('blocks.', 'diffusion_model.blocks.')
k = k.replace('.default.', '.')
# Fun LoRA format
if k.startswith('lora_unet__'):
# Split into main path and weight type parts
parts = k.split('.')
main_part = parts[0] # e.g. lora_unet__blocks_0_cross_attn_k
weight_type = '.'.join(parts[1:]) if len(parts) > 1 else None # e.g. lora_down.weight
# Process the main part - convert from underscore to dot format
if 'blocks_' in main_part:
# Extract components
components = main_part[len('lora_unet__'):].split('_')
# Start with diffusion_model
new_key = "diffusion_model"
# Add blocks.N
if components[0] == 'blocks':
new_key += f".blocks.{components[1]}"
# Handle different module types
idx = 2
if idx < len(components):
if components[idx] == 'self' and idx+1 < len(components) and components[idx+1] == 'attn':
new_key += ".self_attn"
idx += 2
elif components[idx] == 'cross' and idx+1 < len(components) and components[idx+1] == 'attn':
new_key += ".cross_attn"
idx += 2
elif components[idx] == 'ffn':
new_key += ".ffn"
idx += 1
# Add the component (k, q, v, o) and handle img suffix
if idx < len(components):
component = components[idx]
idx += 1
# Check for img suffix
if idx < len(components) and components[idx] == 'img':
component += '_img'
idx += 1
new_key += f".{component}"
# Handle weight type - this is the critical fix
if weight_type:
if weight_type == 'alpha':
new_key += '.alpha'
elif weight_type == 'lora_down.weight' or weight_type == 'lora_down':
new_key += '.lora_A.weight'
elif weight_type == 'lora_up.weight' or weight_type == 'lora_up':
new_key += '.lora_B.weight'
else:
# Keep original weight type if not matching our patterns
new_key += f'.{weight_type}'
# Add .weight suffix if missing
if not new_key.endswith('.weight'):
new_key += '.weight'
k = new_key
else:
# For other lora_unet__ formats (head, embeddings, etc.)
new_key = main_part.replace('lora_unet__', 'diffusion_model.')
# Fix specific component naming patterns
new_key = new_key.replace('_self_attn', '.self_attn')
new_key = new_key.replace('_cross_attn', '.cross_attn')
new_key = new_key.replace('_ffn', '.ffn')
new_key = new_key.replace('blocks_', 'blocks.')
new_key = new_key.replace('head_head', 'head.head')
new_key = new_key.replace('img_emb', 'img_emb')
new_key = new_key.replace('text_embedding', 'text.embedding')
new_key = new_key.replace('time_embedding', 'time.embedding')
new_key = new_key.replace('time_projection', 'time.projection')
# Replace remaining underscores with dots, carefully
parts = new_key.split('.')
final_parts = []
for part in parts:
if part in ['img_emb', 'self_attn', 'cross_attn']:
final_parts.append(part) # Keep these intact
else:
final_parts.append(part.replace('_', '.'))
new_key = '.'.join(final_parts)
# Handle weight type
if weight_type:
if weight_type == 'alpha':
new_key += '.alpha'
elif weight_type == 'lora_down.weight' or weight_type == 'lora_down':
new_key += '.lora_A.weight'
elif weight_type == 'lora_up.weight' or weight_type == 'lora_up':
new_key += '.lora_B.weight'
else:
new_key += f'.{weight_type}'
if not new_key.endswith('.weight'):
new_key += '.weight'
k = new_key
# Handle special embedded components
special_components = {
'time.projection': 'time_projection',
'img.emb': 'img_emb',
'text.emb': 'text_emb',
'time.emb': 'time_emb',
}
for old, new in special_components.items():
if old in k:
k = k.replace(old, new)
# Fix diffusion.model -> diffusion_model
if k.startswith('diffusion.model.'):
k = k.replace('diffusion.model.', 'diffusion_model.')
# Finetrainer format
if '.attn1.' in k:
k = k.replace('.attn1.', '.cross_attn.')
k = k.replace('.to_k.', '.k.')
k = k.replace('.to_q.', '.q.')
k = k.replace('.to_v.', '.v.')
k = k.replace('.to_out.0.', '.o.')
elif '.attn2.' in k:
k = k.replace('.attn2.', '.cross_attn.')
k = k.replace('.to_k.', '.k.')
k = k.replace('.to_q.', '.q.')
k = k.replace('.to_v.', '.v.')
k = k.replace('.to_out.0.', '.o.')
if "img_attn.proj" in k:
k = k.replace("img_attn.proj", "img_attn_proj")
if "img_attn.qkv" in k:
k = k.replace("img_attn.qkv", "img_attn_qkv")
if "txt_attn.proj" in k:
k = k.replace("txt_attn.proj", "txt_attn_proj")
if "txt_attn.qkv" in k:
k = k.replace("txt_attn.qkv", "txt_attn_qkv")
new_sd[k] = v
return new_sd
class WanVideoBlockSwap:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"blocks_to_swap": ("INT", {"default": 20, "min": 0, "max": 40, "step": 1, "tooltip": "Number of transformer blocks to swap, the 14B model has 40, while the 1.3B model has 30 blocks"}),
"offload_img_emb": ("BOOLEAN", {"default": False, "tooltip": "Offload img_emb to offload_device"}),
"offload_txt_emb": ("BOOLEAN", {"default": False, "tooltip": "Offload time_emb to offload_device"}),
},
"optional": {
"use_non_blocking": ("BOOLEAN", {"default": True, "tooltip": "Use non-blocking memory transfer for offloading, reserves more RAM but is faster"}),
"vace_blocks_to_swap": ("INT", {"default": 0, "min": 0, "max": 15, "step": 1, "tooltip": "Number of VACE blocks to swap, the VACE model has 15 blocks"}),
},
}
RETURN_TYPES = ("BLOCKSWAPARGS",)
RETURN_NAMES = ("block_swap_args",)
FUNCTION = "setargs"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Settings for block swapping, reduces VRAM use by swapping blocks to CPU memory"
def setargs(self, **kwargs):
return (kwargs, )
class WanVideoVRAMManagement:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"offload_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Percentage of parameters to offload"}),
},
}
RETURN_TYPES = ("VRAM_MANAGEMENTARGS",)
RETURN_NAMES = ("vram_management_args",)
FUNCTION = "setargs"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Alternative offloading method from DiffSynth-Studio, more aggressive in reducing memory use than block swapping, but can be slower"
def setargs(self, **kwargs):
return (kwargs, )
class WanVideoTorchCompileSettings:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"backend": (["inductor","cudagraphs"], {"default": "inductor"}),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
"dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}),
"compile_transformer_blocks_only": ("BOOLEAN", {"default": True, "tooltip": "Compile only the transformer blocks, usually enough and can make compilation faster and less error prone"}),
},
"optional": {
"dynamo_recompile_limit": ("INT", {"default": 128, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.recompile_limit"}),
},
}
RETURN_TYPES = ("WANCOMPILEARGS",)
RETURN_NAMES = ("torch_compile_args",)
FUNCTION = "set_args"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "torch.compile settings, when connected to the model loader, torch.compile of the selected layers is attempted. Requires Triton and torch 2.5.0 is recommended"
def set_args(self, backend, fullgraph, mode, dynamic, dynamo_cache_size_limit, compile_transformer_blocks_only, dynamo_recompile_limit=128):
compile_args = {
"backend": backend,
"fullgraph": fullgraph,
"mode": mode,
"dynamic": dynamic,
"dynamo_cache_size_limit": dynamo_cache_size_limit,
"dynamo_recompile_limit": dynamo_recompile_limit,
"compile_transformer_blocks_only": compile_transformer_blocks_only,
}
return (compile_args, )
class WanVideoLoraSelect:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"lora": (folder_paths.get_filename_list("loras"),
{"tooltip": "LORA models are expected to be in ComfyUI/models/loras with .safetensors extension"}),
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.0001, "tooltip": "LORA strength, set to 0.0 to unmerge the LORA"}),
},
"optional": {
"prev_lora":("WANVIDLORA", {"default": None, "tooltip": "For loading multiple LoRAs"}),
"blocks":("SELECTEDBLOCKS", ),
"low_mem_load": ("BOOLEAN", {"default": False, "tooltip": "Load the LORA model with less VRAM usage, slower loading. This affects ALL LoRAs, not just the current one"}),
"merge_loras": ("BOOLEAN", {"default": True, "tooltip": "Merge LoRAs into the model, otherwise they are loaded on the fly. Always enabled for GGUF and scaled fp8 models. This affects ALL LoRAs, not just the current one"}),
},
"hidden": {
"unique_id": "UNIQUE_ID",
},
}
RETURN_TYPES = ("WANVIDLORA",)
RETURN_NAMES = ("lora", )
FUNCTION = "getlorapath"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Select a LoRA model from ComfyUI/models/loras"
def getlorapath(self, lora, strength, unique_id, blocks={}, prev_lora=None, low_mem_load=False, merge_loras=True):
loras_list = []
strength = round(strength, 4)
if strength == 0.0:
if prev_lora is not None:
loras_list.extend(prev_lora)
return (loras_list,)
try:
lora_path = folder_paths.get_full_path("loras", lora)
except:
lora_path = lora
# Load metadata from the safetensors file
metadata = {}
try:
from safetensors.torch import safe_open
with safe_open(lora_path, framework="pt", device="cpu") as f:
metadata = f.metadata()
except Exception as e:
print(f"Could not load metadata from {lora}: {e}")
if unique_id and PromptServer is not None:
try:
# Build table rows for metadata
metadata_rows = ""
if metadata:
for key, value in metadata.items():
# Format value - handle special cases
if isinstance(value, dict):
formatted_value = "<pre>" + "\n".join([f"{k}: {v}" for k, v in value.items()]) + "</pre>"
elif isinstance(value, (list, tuple)):
formatted_value = "<pre>" + "\n".join([str(item) for item in value]) + "</pre>"
else:
formatted_value = str(value)
metadata_rows += f"<tr><td><b>{key}</b></td><td>{formatted_value}</td></tr>"
PromptServer.instance.send_progress_text(
f"<details>"
f"<summary><b>Metadata</b></summary>"
f"<table border='0' cellpadding='3'>"
f"<tr><td colspan='2'><b>Metadata</b></td></tr>"
f"{metadata_rows if metadata else '<tr><td>No metadata found</td></tr>'}"
f"</table>"
f"</details>",
unique_id
)
except Exception as e:
print(f"Error displaying metadata: {e}")
pass
lora = {
"path": lora_path,
"strength": strength,
"name": lora.split(".")[0],
"blocks": blocks.get("selected_blocks", {}),
"layer_filter": blocks.get("layer_filter", ""),
"low_mem_load": low_mem_load,
"merge_loras": merge_loras,
}
if prev_lora is not None:
loras_list.extend(prev_lora)
loras_list.append(lora)
return (loras_list,)
class WanVideoLoraSelectMulti:
@classmethod
def INPUT_TYPES(s):
lora_files = folder_paths.get_filename_list("loras")
lora_files = ["none"] + lora_files # Add "none" as the first option
return {
"required": {
"lora_0": (lora_files, {"default": "none"}),
"strength_0": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.0001, "tooltip": "LORA strength, set to 0.0 to unmerge the LORA"}),
"lora_1": (lora_files, {"default": "none"}),
"strength_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.0001, "tooltip": "LORA strength, set to 0.0 to unmerge the LORA"}),
"lora_2": (lora_files, {"default": "none"}),
"strength_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.0001, "tooltip": "LORA strength, set to 0.0 to unmerge the LORA"}),
"lora_3": (lora_files, {"default": "none"}),
"strength_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.0001, "tooltip": "LORA strength, set to 0.0 to unmerge the LORA"}),
"lora_4": (lora_files, {"default": "none"}),
"strength_4": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.0001, "tooltip": "LORA strength, set to 0.0 to unmerge the LORA"}),
},
"optional": {
"prev_lora":("WANVIDLORA", {"default": None, "tooltip": "For loading multiple LoRAs"}),
"blocks":("SELECTEDBLOCKS", ),
"low_mem_load": ("BOOLEAN", {"default": False, "tooltip": "Load the LORA model with less VRAM usage, slower loading"}),
"merge_loras": ("BOOLEAN", {"default": True, "tooltip": "Merge LoRAs into the model, otherwise they are loaded on the fly. Always enabled for GGUF and scaled fp8 models. This affects ALL LoRAs, not just the current one"}),
}
}
RETURN_TYPES = ("WANVIDLORA",)
RETURN_NAMES = ("lora", )
FUNCTION = "getlorapath"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Select a LoRA model from ComfyUI/models/loras"
def getlorapath(self, lora_0, strength_0, lora_1, strength_1, lora_2, strength_2,
lora_3, strength_3, lora_4, strength_4, blocks={}, prev_lora=None,
low_mem_load=False, merge_loras=True):
loras_list = list(prev_lora) if prev_lora else []
lora_inputs = [
(lora_0, strength_0),
(lora_1, strength_1),
(lora_2, strength_2),
(lora_3, strength_3),
(lora_4, strength_4)
]
for lora_name, strength in lora_inputs:
s = round(strength, 4)
if not lora_name or lora_name == "none" or s == 0.0:
continue
loras_list.append({
"path": folder_paths.get_full_path("loras", lora_name),
"strength": s,
"name": lora_name.split(".")[0],
"blocks": blocks.get("selected_blocks", {}),
"layer_filter": blocks.get("layer_filter", ""),
"low_mem_load": low_mem_load,
"merge_loras": merge_loras,
})
return (loras_list,)
class WanVideoVACEModelSelect:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"vace_model": (folder_paths.get_filename_list("diffusion_models"), {"tooltip": "These models are loaded from the 'ComfyUI/models/diffusion_models' VACE model to use when not using model that has it included"}),
},
}
RETURN_TYPES = ("VACEPATH",)
RETURN_NAMES = ("vace_model", )
FUNCTION = "getvacepath"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "VACE model to use when not using model that has it included, loaded from 'ComfyUI/models/diffusion_models'"
def getvacepath(self, vace_model):
vace_model = {
"path": folder_paths.get_full_path("diffusion_models", vace_model),
}
return (vace_model,)
class WanVideoLoraBlockEdit:
def __init__(self):
self.loaded_lora = None
@classmethod
def INPUT_TYPES(s):
arg_dict = {}
argument = ("BOOLEAN", {"default": True})
for i in range(40):
arg_dict["blocks.{}.".format(i)] = argument
return {"required": arg_dict, "optional": {"layer_filter": ("STRING", {"default": "", "multiline": True})}}
RETURN_TYPES = ("SELECTEDBLOCKS", )
RETURN_NAMES = ("blocks", )
OUTPUT_TOOLTIPS = ("The modified lora model",)
FUNCTION = "select"
CATEGORY = "WanVideoWrapper"
def select(self, layer_filter=[], **kwargs):
selected_blocks = {k: v for k, v in kwargs.items() if v is True and isinstance(v, bool)}
print("Selected blocks LoRA: ", selected_blocks)
selected = {
"selected_blocks": selected_blocks,
"layer_filter": [x.strip() for x in layer_filter.split(",")]
}
return (selected,)
def model_lora_keys_unet(model, key_map={}):
sd = model.state_dict()
sdk = sd.keys()
for k in sdk:
k = k.replace("_orig_mod.", "")
if k.startswith("diffusion_model."):
if k.endswith(".weight"):
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
key_map["lora_unet_{}".format(key_lora)] = k
key_map["{}".format(k[:-len(".weight")])] = k #generic lora format without any weird key names
else:
key_map["{}".format(k)] = k #generic lora format for not .weight without any weird key names
diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config)
for k in diffusers_keys:
if k.endswith(".weight"):
unet_key = "diffusion_model.{}".format(diffusers_keys[k])
key_lora = k[:-len(".weight")].replace(".", "_")
key_map["lora_unet_{}".format(key_lora)] = unet_key
key_map["lycoris_{}".format(key_lora)] = unet_key #simpletuner lycoris format
diffusers_lora_prefix = ["", "unet."]
for p in diffusers_lora_prefix:
diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_"))
if diffusers_lora_key.endswith(".to_out.0"):
diffusers_lora_key = diffusers_lora_key[:-2]
key_map[diffusers_lora_key] = unet_key
return key_map
def add_patches(patcher, patches, strength_patch=1.0, strength_model=1.0):
with patcher.use_ejected():
p = set()
model_sd = patcher.model.state_dict()
for k in patches:
offset = None
function = None
if isinstance(k, str):
key = k
else:
offset = k[1]
key = k[0]
if len(k) > 2:
function = k[2]
# Check for key, or key with '._orig_mod' inserted after block number, in model_sd
key_in_sd = key in model_sd
key_orig_mod = None
if not key_in_sd:
# Try to insert '._orig_mod' after the block number if pattern matches
parts = key.split('.')
# Look for 'blocks', block number, then insert
try:
idx = parts.index('blocks')
if idx + 1 < len(parts):
# Only if the next part is a number
if parts[idx+1].isdigit():
new_parts = parts[:idx+2] + ['_orig_mod'] + parts[idx+2:]
key_orig_mod = '.'.join(new_parts)
except ValueError:
pass
key_orig_mod_in_sd = key_orig_mod is not None and key_orig_mod in model_sd
if key_in_sd or key_orig_mod_in_sd:
actual_key = key if key_in_sd else key_orig_mod
p.add(k)
current_patches = patcher.patches.get(actual_key, [])
current_patches.append((strength_patch, patches[k], strength_model, offset, function))
patcher.patches[actual_key] = current_patches
patcher.patches_uuid = uuid.uuid4()
return list(p)
def load_lora_for_models_mod(model, lora, strength_model):
key_map = {}
if model is not None:
key_map = model_lora_keys_unet(model.model, key_map)
loaded = comfy.lora.load_lora(lora, key_map)
new_modelpatcher = model.clone()
k = add_patches(new_modelpatcher, loaded, strength_model)
k = set(k)
for x in loaded:
if (x not in k):
log.warning("NOT LOADED {}".format(x))
return (new_modelpatcher)
class WanVideoSetLoRAs:
@classmethod
def INPUT_TYPES(s):
return {
"required":
{
"model": ("WANVIDEOMODEL", ),
},
"optional": {
"lora": ("WANVIDLORA", ),
}
}
RETURN_TYPES = ("WANVIDEOMODEL",)
RETURN_NAMES = ("model", )
FUNCTION = "setlora"
CATEGORY = "WanVideoWrapper"
EXPERIMENTAL = True
DESCRIPTION = "Sets the LoRA weights to be used directly in linear layers of the model, this does NOT merge LoRAs"
def setlora(self, model, lora=None):
if lora is None:
return (model,)
patcher = model.clone()
lora_low_mem_load = merge_loras = False
for l in lora:
lora_low_mem_load = l.get("low_mem_load", False)
merge_loras = l.get("merge_loras", True)
if lora_low_mem_load is True or merge_loras is True:
raise ValueError("Set LoRA node does not use low_mem_load and can't merge LoRAs, disable low_mem_load when and merge_loras in the LoRA select node.")
for l in lora:
log.info(f"Loading LoRA: {l['name']} with strength: {l['strength']}")
lora_path = l["path"]
lora_strength = l["strength"]
if lora_strength == 0:
log.warning(f"LoRA {lora_path} has strength 0, skipping...")
continue
lora_sd = load_torch_file(lora_path, safe_load=True)
if "dwpose_embedding.0.weight" in lora_sd: #unianimate
raise NotImplementedError("Unianimate LoRA patching is not implemented in this node.")
lora_sd = standardize_lora_key_format(lora_sd)
if l["blocks"]:
lora_sd = filter_state_dict_by_blocks(lora_sd, l["blocks"], l.get("layer_filter", []))
if "diffusion_model.patch_embedding.lora_A.weight" in lora_sd:
raise NotImplementedError("Control LoRA patching is not implemented in this node.")
patcher = load_lora_for_models_mod(patcher, lora_sd, lora_strength)
del lora_sd
if 'transformer_options' not in patcher.model_options:
patcher.model_options['transformer_options'] = {}
patcher.model_options['transformer_options']["linear_with_lora"] = True
return (patcher,)
#region Model loading
class WanVideoModelLoader:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": (folder_paths.get_filename_list("unet_gguf") + folder_paths.get_filename_list("diffusion_models"), {"tooltip": "These models are loaded from the 'ComfyUI/models/diffusion_models' -folder",}),
"base_precision": (["fp32", "bf16", "fp16", "fp16_fast"], {"default": "bf16"}),
"quantization": (["disabled", "fp8_e4m3fn", "fp8_e4m3fn_fast", "fp8_e5m2", "fp8_e4m3fn_fast_no_ffn", "fp8_e4m3fn_scaled", "fp8_e5m2_scaled"], {"default": "disabled", "tooltip": "optional quantization method"}),
"load_device": (["main_device", "offload_device"], {"default": "main_device", "tooltip": "Initial device to load the model to, NOT recommended with the larger models unless you have 48GB+ VRAM"}),
},
"optional": {
"attention_mode": ([
"sdpa",
"flash_attn_2",
"flash_attn_3",
"sageattn",
"flex_attention",
"radial_sage_attention",
], {"default": "sdpa"}),
"compile_args": ("WANCOMPILEARGS", ),
"block_swap_args": ("BLOCKSWAPARGS", ),
"lora": ("WANVIDLORA", {"default": None}),
"vram_management_args": ("VRAM_MANAGEMENTARGS", {"default": None, "tooltip": "Alternative offloading method from DiffSynth-Studio, more aggressive in reducing memory use than block swapping, but can be slower"}),
"vace_model": ("VACEPATH", {"default": None, "tooltip": "VACE model to use when not using model that has it included"}),
"fantasytalking_model": ("FANTASYTALKINGMODEL", {"default": None, "tooltip": "FantasyTalking model https://github.com/Fantasy-AMAP"}),
"multitalk_model": ("MULTITALKMODEL", {"default": None, "tooltip": "Multitalk model"}),
}
}
RETURN_TYPES = ("WANVIDEOMODEL",)
RETURN_NAMES = ("model", )
FUNCTION = "loadmodel"
CATEGORY = "WanVideoWrapper"
def loadmodel(self, model, base_precision, load_device, quantization,
compile_args=None, attention_mode="sdpa", block_swap_args=None, lora=None, vram_management_args=None, vace_model=None, fantasytalking_model=None, multitalk_model=None):
assert not (vram_management_args is not None and block_swap_args is not None), "Can't use both block_swap_args and vram_management_args at the same time"
lora_low_mem_load = merge_loras = False
if lora is not None:
for l in lora:
lora_low_mem_load = l.get("low_mem_load", False)
merge_loras = l.get("merge_loras", True)
transformer = None
mm.unload_all_models()
mm.cleanup_models()
mm.soft_empty_cache()
manual_offloading = True
if "sage" in attention_mode:
try:
from sageattention import sageattn
except Exception as e:
raise ValueError(f"Can't import SageAttention: {str(e)}")
gguf = False
if model.endswith(".gguf"):
if quantization != "disabled":
raise ValueError("Quantization should be disabled when loading GGUF models.")
quantization = "gguf"
gguf = True
merge_loras = False
manual_offloading = True
transformer_load_device = device if load_device == "main_device" else offload_device
base_dtype = {"fp8_e4m3fn": torch.float8_e4m3fn, "fp8_e4m3fn_fast": torch.float8_e4m3fn, "bf16": torch.bfloat16, "fp16": torch.float16, "fp16_fast": torch.float16, "fp32": torch.float32}[base_precision]
if base_precision == "fp16_fast":
if hasattr(torch.backends.cuda.matmul, "allow_fp16_accumulation"):
torch.backends.cuda.matmul.allow_fp16_accumulation = True
else:
raise ValueError("torch.backends.cuda.matmul.allow_fp16_accumulation is not available in this version of torch, requires torch 2.7.0.dev2025 02 26 nightly minimum currently")
else:
try:
if hasattr(torch.backends.cuda.matmul, "allow_fp16_accumulation"):
torch.backends.cuda.matmul.allow_fp16_accumulation = False
except:
pass
model_path = folder_paths.get_full_path_or_raise("diffusion_models", model)
if not gguf:
sd = load_torch_file(model_path, device=transformer_load_device, safe_load=True)
else:
from diffusers.models.model_loading_utils import load_gguf_checkpoint
sd = load_gguf_checkpoint(model_path)
if quantization == "disabled":
for k, v in sd.items():
if isinstance(v, torch.Tensor):
if v.dtype == torch.float8_e4m3fn:
quantization = "fp8_e4m3fn"
if "scaled_fp8" in sd:
quantization = "fp8_e4m3fn_scaled"
break
elif v.dtype == torch.float8_e5m2:
quantization = "fp8_e5m2"
if "scaled_fp8" in sd:
quantization = "fp8_e5m2_scaled"
break
if "scaled_fp8" in sd and "scaled" not in quantization:
raise ValueError("The model is a scaled fp8 model, please set quantization to '_scaled'")
if merge_loras and "scaled" in quantization:
raise ValueError("scaled models currently do not support merging LoRAs, please disable merging or use a non-scaled model")
if "vace_blocks.0.after_proj.weight" in sd and not "patch_embedding.weight" in sd:
raise ValueError("You are attempting to load a VACE module as a WanVideo model, instead you should use the vace_model input and matching T2V base model")
if vace_model is not None:
if gguf:
if not vace_model["path"].endswith(".gguf"):
raise ValueError("With GGUF main model the VACE module must also be a GGUF quantized, if the main model already has VACE included, you can disconnect the VACE module loader")
vace_sd = load_gguf_checkpoint(model_path)
else:
vace_sd = load_torch_file(vace_model["path"], device=transformer_load_device, safe_load=True)
sd.update(vace_sd)
first_key = next(iter(sd))
if first_key.startswith("model.diffusion_model."):
new_sd = {}
for key, value in sd.items():
new_key = key.replace("model.diffusion_model.", "", 1)
new_sd[new_key] = value
sd = new_sd
elif first_key.startswith("model."):
new_sd = {}
for key, value in sd.items():
new_key = key.replace("model.", "", 1)
new_sd[new_key] = value
sd = new_sd
if not "patch_embedding.weight" in sd:
raise ValueError("Invalid WanVideo model selected")
dim = sd["patch_embedding.weight"].shape[0]
in_features = sd["blocks.0.self_attn.k.weight"].shape[1]
out_features = sd["blocks.0.self_attn.k.weight"].shape[0]
in_channels = sd["patch_embedding.weight"].shape[1]
log.info(f"Detected model in_channels: {in_channels}")
ffn_dim = sd["blocks.0.ffn.0.bias"].shape[0]
ffn2_dim = sd["blocks.0.ffn.2.weight"].shape[1]
if not "text_embedding.0.weight" in sd:
model_type = "no_cross_attn" #minimaxremover
elif "model_type.Wan2_1-FLF2V-14B-720P" in sd or "img_emb.emb_pos" in sd or "flf2v" in model.lower():
model_type = "fl2v"
elif in_channels in [36, 48]:
model_type = "i2v"
elif in_channels == 16:
model_type = "t2v"
elif "control_adapter.conv.weight" in sd:
model_type = "t2v"
num_heads = 40 if dim == 5120 else 12
num_layers = 40 if dim == 5120 else 30
vace_layers, vace_in_dim = None, None
if "vace_blocks.0.after_proj.weight" in sd:
if in_channels != 16:
raise ValueError("VACE only works properly with T2V models.")
model_type = "t2v"
if dim == 5120:
vace_layers = [0, 5, 10, 15, 20, 25, 30, 35]
else:
vace_layers = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28]
vace_in_dim = 96
log.info(f"Model type: {model_type}, num_heads: {num_heads}, num_layers: {num_layers}")
teacache_coefficients_map = {
"1_3B": {
"e": [2.39676752e+03, -1.31110545e+03, 2.01331979e+02, -8.29855975e+00, 1.37887774e-01],
"e0": [-5.21862437e+04, 9.23041404e+03, -5.28275948e+02, 1.36987616e+01, -4.99875664e-02],
},
"14B": {
"e": [-5784.54975374, 5449.50911966, -1811.16591783, 256.27178429, -13.02252404],
"e0": [-3.03318725e+05, 4.90537029e+04, -2.65530556e+03, 5.87365115e+01, -3.15583525e-01],
},
"i2v_480": {
"e": [-3.02331670e+02, 2.23948934e+02, -5.25463970e+01, 5.87348440e+00, -2.01973289e-01],
"e0": [2.57151496e+05, -3.54229917e+04, 1.40286849e+03, -1.35890334e+01, 1.32517977e-01],
},
"i2v_720":{
"e": [-114.36346466, 65.26524496, -18.82220707, 4.91518089, -0.23412683],
"e0": [8.10705460e+03, 2.13393892e+03, -3.72934672e+02, 1.66203073e+01, -4.17769401e-02],
},
}
magcache_ratios_map = {
"1_3B": np.array([1.0]*2+[1.0124, 1.02213, 1.00166, 1.0041, 0.99791, 1.00061, 0.99682, 0.99762, 0.99634, 0.99685, 0.99567, 0.99586, 0.99416, 0.99422, 0.99578, 0.99575, 0.9957, 0.99563, 0.99511, 0.99506, 0.99535, 0.99531, 0.99552, 0.99549, 0.99541, 0.99539, 0.9954, 0.99536, 0.99489, 0.99485, 0.99518, 0.99514, 0.99484, 0.99478, 0.99481, 0.99479, 0.99415, 0.99413, 0.99419, 0.99416, 0.99396, 0.99393, 0.99388, 0.99386, 0.99349, 0.99349, 0.99309, 0.99304, 0.9927, 0.9927, 0.99228, 0.99226, 0.99171, 0.9917, 0.99137, 0.99135, 0.99068, 0.99063, 0.99005, 0.99003, 0.98944, 0.98942, 0.98849, 0.98849, 0.98758, 0.98757, 0.98644, 0.98643, 0.98504, 0.98503, 0.9836, 0.98359, 0.98202, 0.98201, 0.97977, 0.97978, 0.97717, 0.97718, 0.9741, 0.97411, 0.97003, 0.97002, 0.96538, 0.96541, 0.9593, 0.95933, 0.95086, 0.95089, 0.94013, 0.94019, 0.92402, 0.92414, 0.90241, 0.9026, 0.86821, 0.86868, 0.81838, 0.81939]),
"14B": np.array([1.0]*2+[1.02504, 1.03017, 1.00025, 1.00251, 0.9985, 0.99962, 0.99779, 0.99771, 0.9966, 0.99658, 0.99482, 0.99476, 0.99467, 0.99451, 0.99664, 0.99656, 0.99434, 0.99431, 0.99533, 0.99545, 0.99468, 0.99465, 0.99438, 0.99434, 0.99516, 0.99517, 0.99384, 0.9938, 0.99404, 0.99401, 0.99517, 0.99516, 0.99409, 0.99408, 0.99428, 0.99426, 0.99347, 0.99343, 0.99418, 0.99416, 0.99271, 0.99269, 0.99313, 0.99311, 0.99215, 0.99215, 0.99218, 0.99215, 0.99216, 0.99217, 0.99163, 0.99161, 0.99138, 0.99135, 0.98982, 0.9898, 0.98996, 0.98995, 0.9887, 0.98866, 0.98772, 0.9877, 0.98767, 0.98765, 0.98573, 0.9857, 0.98501, 0.98498, 0.9838, 0.98376, 0.98177, 0.98173, 0.98037, 0.98035, 0.97678, 0.97677, 0.97546, 0.97543, 0.97184, 0.97183, 0.96711, 0.96708, 0.96349, 0.96345, 0.95629, 0.95625, 0.94926, 0.94929, 0.93964, 0.93961, 0.92511, 0.92504, 0.90693, 0.90678, 0.8796, 0.87945, 0.86111, 0.86189]),
"i2v_480": np.array([1.0]*2+[0.98783, 0.98993, 0.97559, 0.97593, 0.98311, 0.98319, 0.98202, 0.98225, 0.9888, 0.98878, 0.98762, 0.98759, 0.98957, 0.98971, 0.99052, 0.99043, 0.99383, 0.99384, 0.98857, 0.9886, 0.99065, 0.99068, 0.98845, 0.98847, 0.99057, 0.99057, 0.98957, 0.98961, 0.98601, 0.9861, 0.98823, 0.98823, 0.98756, 0.98759, 0.98808, 0.98814, 0.98721, 0.98724, 0.98571, 0.98572, 0.98543, 0.98544, 0.98157, 0.98165, 0.98411, 0.98413, 0.97952, 0.97953, 0.98149, 0.9815, 0.9774, 0.97742, 0.97825, 0.97826, 0.97355, 0.97361, 0.97085, 0.97087, 0.97056, 0.97055, 0.96588, 0.96587, 0.96113, 0.96124, 0.9567, 0.95681, 0.94961, 0.94969, 0.93973, 0.93988, 0.93217, 0.93224, 0.91878, 0.91896, 0.90955, 0.90954, 0.92617, 0.92616]),
"i2v_720": np.array([1.0]*2+[0.99428, 0.99498, 0.98588, 0.98621, 0.98273, 0.98281, 0.99018, 0.99023, 0.98911, 0.98917, 0.98646, 0.98652, 0.99454, 0.99456, 0.9891, 0.98909, 0.99124, 0.99127, 0.99102, 0.99103, 0.99215, 0.99212, 0.99515, 0.99515, 0.99576, 0.99572, 0.99068, 0.99072, 0.99097, 0.99097, 0.99166, 0.99169, 0.99041, 0.99042, 0.99201, 0.99198, 0.99101, 0.99101, 0.98599, 0.98603, 0.98845, 0.98844, 0.98848, 0.98851, 0.98862, 0.98857, 0.98718, 0.98719, 0.98497, 0.98497, 0.98264, 0.98263, 0.98389, 0.98393, 0.97938, 0.9794, 0.97535, 0.97536, 0.97498, 0.97499, 0.973, 0.97301, 0.96827, 0.96828, 0.96261, 0.96263, 0.95335, 0.9534, 0.94649, 0.94655, 0.93397, 0.93414, 0.91636, 0.9165, 0.89088, 0.89109, 0.8679, 0.86768]),
}
model_variant = "14B" #default to this
if model_type == "i2v" or model_type == "fl2v":
if "480" in model or "fun" in model.lower() or "a2" in model.lower() or "540" in model: #just a guess for the Fun model for now...
model_variant = "i2v_480"
elif "720" in model:
model_variant = "i2v_720"
elif model_type == "t2v":
model_variant = "14B"
if dim == 1536:
model_variant = "1_3B"
log.info(f"Model variant detected: {model_variant}")
TRANSFORMER_CONFIG= {
"dim": dim,
"in_features": in_features,
"out_features": out_features,
"ffn_dim": ffn_dim,
"ffn2_dim": ffn2_dim,
"eps": 1e-06,
"freq_dim": 256,
"in_dim": in_channels,
"model_type": model_type,
"out_dim": 16,
"text_len": 512,
"num_heads": num_heads,
"num_layers": num_layers,
"attention_mode": attention_mode,
"rope_func": "comfy",
"main_device": device,
"offload_device": offload_device,
"teacache_coefficients": teacache_coefficients_map[model_variant],
"magcache_ratios": magcache_ratios_map[model_variant],
"vace_layers": vace_layers,
"vace_in_dim": vace_in_dim,
"inject_sample_info": True if "fps_embedding.weight" in sd else False,
"add_ref_conv": True if "ref_conv.weight" in sd else False,
"in_dim_ref_conv": sd["ref_conv.weight"].shape[1] if "ref_conv.weight" in sd else None,
"add_control_adapter": True if "control_adapter.conv.weight" in sd else False,
}
with init_empty_weights():
transformer = WanModel(**TRANSFORMER_CONFIG)
transformer.eval()
#ReCamMaster
if "blocks.0.cam_encoder.weight" in sd:
log.info("ReCamMaster model detected, patching model...")
import torch.nn as nn
for block in transformer.blocks:
block.cam_encoder = nn.Linear(12, dim)
block.projector = nn.Linear(dim, dim)
block.cam_encoder.weight.data.zero_()
block.cam_encoder.bias.data.zero_()
block.projector.weight = nn.Parameter(torch.eye(dim))
block.projector.bias = nn.Parameter(torch.zeros(dim))
# FantasyTalking https://github.com/Fantasy-AMAP
if fantasytalking_model is not None:
log.info("FantasyTalking model detected, patching model...")
context_dim = fantasytalking_model["sd"]["proj_model.proj.weight"].shape[0]
import torch.nn as nn
for block in transformer.blocks:
block.cross_attn.k_proj = nn.Linear(context_dim, dim, bias=False)
block.cross_attn.v_proj = nn.Linear(context_dim, dim, bias=False)
sd.update(fantasytalking_model["sd"])
if multitalk_model is not None:
# init audio module
from .multitalk.multitalk import SingleStreamMultiAttention
from .wanvideo.modules.model import WanRMSNorm, WanLayerNorm
norm_input_visual = True #dunno what this is
for block in transformer.blocks:
block.audio_cross_attn = SingleStreamMultiAttention(
dim=dim,
encoder_hidden_states_dim=768,
num_heads=num_heads,
qk_norm=False,
qkv_bias=True,
eps=transformer.eps,
norm_layer=WanRMSNorm,
class_range=24,
class_interval=4,
attention_mode=attention_mode,
)
block.norm_x = WanLayerNorm(dim, transformer.eps, elementwise_affine=True) if norm_input_visual else nn.Identity()
log.info("MultiTalk model detected, patching model...")
sd.update(multitalk_model["sd"])
# Additional cond latents
if "add_conv_in.weight" in sd:
def zero_module(module):
for p in module.parameters():
torch.nn.init.zeros_(p)
return module
inner_dim = sd["add_conv_in.weight"].shape[0]
add_cond_in_dim = sd["add_conv_in.weight"].shape[1]
attn_cond_in_dim = sd["attn_conv_in.weight"].shape[1]
transformer.add_conv_in = torch.nn.Conv3d(add_cond_in_dim, inner_dim, kernel_size=transformer.patch_size, stride=transformer.patch_size)
transformer.add_proj = zero_module(torch.nn.Linear(inner_dim, inner_dim))
transformer.attn_conv_in = torch.nn.Conv3d(attn_cond_in_dim, inner_dim, kernel_size=transformer.patch_size, stride=transformer.patch_size)
comfy_model = WanVideoModel(
WanVideoModelConfig(base_dtype),
model_type=comfy.model_base.ModelType.FLOW,
device=device,
)
if not gguf:
if "fp8_e4m3fn" in quantization:
dtype = torch.float8_e4m3fn
elif "fp8_e5m2" in quantization:
dtype = torch.float8_e5m2
else:
dtype = base_dtype
params_to_keep = {"norm", "head", "bias", "time_in", "vector_in", "patch_embedding", "time_", "img_emb", "modulation", "text_embedding", "adapter", "add"}
#if lora is not None:
# transformer_load_device = device
if not lora_low_mem_load:
log.info("Using accelerate to load and assign model weights to device...")
param_count = sum(1 for _ in transformer.named_parameters())
pbar = ProgressBar(param_count)
for name, param in tqdm(transformer.named_parameters(),
desc=f"Loading transformer parameters to {transformer_load_device}",
total=param_count,
leave=True):
dtype_to_use = base_dtype if any(keyword in name for keyword in params_to_keep) else dtype
if "patch_embedding" in name:
dtype_to_use = torch.float32
set_module_tensor_to_device(transformer, name, device=transformer_load_device, dtype=dtype_to_use, value=sd[name])
pbar.update(1)
comfy_model.diffusion_model = transformer
comfy_model.load_device = transformer_load_device
patcher = comfy.model_patcher.ModelPatcher(comfy_model, device, offload_device)
patcher.model.is_patched = False
control_lora = False
if lora is not None:
for l in lora:
log.info(f"Loading LoRA: {l['name']} with strength: {l['strength']}")
lora_path = l["path"]
lora_strength = l["strength"]
if lora_strength == 0:
log.warning(f"LoRA {lora_path} has strength 0, skipping...")
continue
lora_sd = load_torch_file(lora_path, safe_load=True)
if "dwpose_embedding.0.weight" in lora_sd: #unianimate
from .unianimate.nodes import update_transformer
log.info("Unianimate LoRA detected, patching model...")
transformer = update_transformer(transformer, lora_sd)
lora_sd = standardize_lora_key_format(lora_sd)
if l["blocks"]:
lora_sd = filter_state_dict_by_blocks(lora_sd, l["blocks"], l.get("layer_filter", []))
#spacepxl's control LoRA patch
# for key in lora_sd.keys():
# print(key)
if "diffusion_model.patch_embedding.lora_A.weight" in lora_sd:
log.info("Control-LoRA detected, patching model...")
control_lora = True
in_cls = transformer.patch_embedding.__class__ # nn.Conv3d
old_in_dim = transformer.in_dim # 16
new_in_dim = lora_sd["diffusion_model.patch_embedding.lora_A.weight"].shape[1]
assert new_in_dim == 32
new_in = in_cls(
new_in_dim,
transformer.patch_embedding.out_channels,
transformer.patch_embedding.kernel_size,
transformer.patch_embedding.stride,
transformer.patch_embedding.padding,
).to(device=device, dtype=torch.float32)
new_in.weight.zero_()
new_in.bias.zero_()
new_in.weight[:, :old_in_dim].copy_(transformer.patch_embedding.weight)
new_in.bias.copy_(transformer.patch_embedding.bias)
transformer.patch_embedding = new_in
transformer.expanded_patch_embedding = new_in
transformer.register_to_config(in_dim=new_in_dim)
patcher, _ = load_lora_for_models(patcher, None, lora_sd, lora_strength, 0)
del lora_sd
if not gguf and not "scaled" in quantization and merge_loras:
log.info("Patching LoRA to the model...")
patcher = apply_lora(patcher, device, transformer_load_device, params_to_keep=params_to_keep, dtype=dtype, base_dtype=base_dtype, state_dict=sd, low_mem_load=lora_low_mem_load, control_lora=control_lora)
if gguf:
#from diffusers.quantizers.gguf.utils import _replace_with_gguf_linear, GGUFParameter
from .gguf.gguf import _replace_with_gguf_linear, GGUFParameter
log.info("Using GGUF to load and assign model weights to device...")
param_count = sum(1 for _ in transformer.named_parameters())
out_features = sd["blocks.0.self_attn.k.weight"].shape[1]
patcher.model.diffusion_model = _replace_with_gguf_linear(patcher.model.diffusion_model, base_dtype, sd, patches=patcher.patches)
pbar = ProgressBar(param_count)
for name, param in tqdm(patcher.model.diffusion_model.named_parameters(),
desc=f"Loading transformer parameters to {transformer_load_device}",
total=param_count,
leave=True):
#print(name, param.dtype, param.device, param.shape)
if isinstance(param, GGUFParameter):
dtype_to_use = torch.uint8
elif "patch_embedding" in name:
dtype_to_use = torch.float32
else:
dtype_to_use = base_dtype
set_module_tensor_to_device(patcher.model.diffusion_model, name, device=transformer_load_device, dtype=dtype_to_use, value=sd[name])
pbar.update(1)
#for name, param in transformer.named_parameters():
# print(name, param.dtype, param.device, param.shape)
#patcher.load(device, full_load=True)
patcher.model.is_patched = True
if "fast" in quantization:
if not merge_loras:
raise ValueError("FP8 fast quantization requires LoRAs to be merged into the model, please set merge_loras=True in the LoRA input")
from .fp8_optimization import convert_fp8_linear
if quantization == "fp8_e4m3fn_fast_no_ffn":
params_to_keep.update({"ffn"})
print(params_to_keep)
convert_fp8_linear(patcher.model.diffusion_model, base_dtype, params_to_keep=params_to_keep)
if "scaled" in quantization:
scale_weights = {}
for k, v in sd.items():
if k.endswith(".scale_weight"):
scale_weights[k] = v
log.info("Using FP8 scaled linear quantization")
convert_linear_with_lora_and_scale(patcher.model.diffusion_model, scale_weights, params_to_keep=params_to_keep, patches=patcher.patches)
elif lora is not None and not merge_loras and not gguf:
log.info("LoRAs will be applied at runtime")
convert_linear_with_lora_and_scale(patcher.model.diffusion_model, patches=patcher.patches)
del sd
if multitalk_model is not None:
transformer.audio_proj = multitalk_model["proj_model"]
if vram_management_args is not None:
if gguf:
raise ValueError("GGUF models don't support vram management")
from .diffsynth.vram_management import enable_vram_management, AutoWrappedModule, AutoWrappedLinear
from .wanvideo.modules.model import WanLayerNorm, WanRMSNorm
total_params_in_model = sum(p.numel() for p in patcher.model.diffusion_model.parameters())
log.info(f"Total number of parameters in the loaded model: {total_params_in_model}")
offload_percent = vram_management_args["offload_percent"]
offload_params = int(total_params_in_model * offload_percent)
params_to_keep = total_params_in_model - offload_params
log.info(f"Selected params to offload: {offload_params}")
enable_vram_management(
patcher.model.diffusion_model,
module_map = {
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Conv3d: AutoWrappedModule,
torch.nn.LayerNorm: AutoWrappedModule,
WanLayerNorm: AutoWrappedModule,
WanRMSNorm: AutoWrappedModule,
},
module_config = dict(
offload_dtype=dtype,
offload_device=offload_device,
onload_dtype=dtype,
onload_device=device,
computation_dtype=base_dtype,
computation_device=device,
),
max_num_param=params_to_keep,
overflow_module_config = dict(
offload_dtype=dtype,
offload_device=offload_device,
onload_dtype=dtype,
onload_device=offload_device,
computation_dtype=base_dtype,
computation_device=device,
),
compile_args = compile_args,
)
# #compile
# if compile_args is not None and vram_management_args is None:
# torch._dynamo.config.cache_size_limit = compile_args["dynamo_cache_size_limit"]
# try:
# if hasattr(torch, '_dynamo') and hasattr(torch._dynamo, 'config'):
# torch._dynamo.config.recompile_limit = compile_args["dynamo_recompile_limit"]
# except Exception as e:
# log.warning(f"Could not set recompile_limit: {e}")
# if compile_args["compile_transformer_blocks_only"]:
# for i, block in enumerate(patcher.model.diffusion_model.blocks):
# patcher.model.diffusion_model.blocks[i] = torch.compile(block, fullgraph=compile_args["fullgraph"], dynamic=compile_args["dynamic"], backend=compile_args["backend"], mode=compile_args["mode"])
# if vace_layers is not None:
# for i, block in enumerate(patcher.model.diffusion_model.vace_blocks):
# patcher.model.diffusion_model.vace_blocks[i] = torch.compile(block, fullgraph=compile_args["fullgraph"], dynamic=compile_args["dynamic"], backend=compile_args["backend"], mode=compile_args["mode"])
# else:
# patcher.model.diffusion_model = torch.compile(patcher.model.diffusion_model, fullgraph=compile_args["fullgraph"], dynamic=compile_args["dynamic"], backend=compile_args["backend"], mode=compile_args["mode"])
if load_device == "offload_device" and patcher.model.diffusion_model.device != offload_device:
log.info(f"Moving diffusion model from {patcher.model.diffusion_model.device} to {offload_device}")
patcher.model.diffusion_model.to(offload_device)
gc.collect()
mm.soft_empty_cache()
patcher.model["dtype"] = base_dtype
patcher.model["base_path"] = model_path
patcher.model["model_name"] = model
patcher.model["manual_offloading"] = manual_offloading
patcher.model["quantization"] = quantization
patcher.model["auto_cpu_offload"] = True if vram_management_args is not None else False
patcher.model["control_lora"] = control_lora
patcher.model["compile_args"] = compile_args
if 'transformer_options' not in patcher.model_options:
patcher.model_options['transformer_options'] = {}
patcher.model_options["transformer_options"]["block_swap_args"] = block_swap_args
for model in mm.current_loaded_models:
if model._model() == patcher:
mm.current_loaded_models.remove(model)
return (patcher,)
#region load VAE
class WanVideoVAELoader:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model_name": (folder_paths.get_filename_list("vae"), {"tooltip": "These models are loaded from 'ComfyUI/models/vae'"}),
},
"optional": {
"precision": (["fp16", "fp32", "bf16"],
{"default": "bf16"}
),
}
}
RETURN_TYPES = ("WANVAE",)
RETURN_NAMES = ("vae", )
FUNCTION = "loadmodel"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Loads Wan VAE model from 'ComfyUI/models/vae'"
def loadmodel(self, model_name, precision):
from .wanvideo.wan_video_vae import WanVideoVAE
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]
#with open(os.path.join(script_directory, 'configs', 'hy_vae_config.json')) as f:
# vae_config = json.load(f)
model_path = folder_paths.get_full_path("vae", model_name)
vae_sd = load_torch_file(model_path, safe_load=True)
has_model_prefix = any(k.startswith("model.") for k in vae_sd.keys())
if not has_model_prefix:
vae_sd = {f"model.{k}": v for k, v in vae_sd.items()}
vae = WanVideoVAE(dtype=dtype)
vae.load_state_dict(vae_sd)
vae.eval()
vae.to(device = offload_device, dtype = dtype)
return (vae,)
class WanVideoTinyVAELoader:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model_name": (folder_paths.get_filename_list("vae_approx"), {"tooltip": "These models are loaded from 'ComfyUI/models/vae_approx'"}),
},
"optional": {
"precision": (["fp16", "fp32", "bf16"], {"default": "fp16"}),
"parallel": ("BOOLEAN", {"default": False, "tooltip": "uses more memory but is faster"}),
}
}
RETURN_TYPES = ("WANVAE",)
RETURN_NAMES = ("vae", )
FUNCTION = "loadmodel"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Loads Wan VAE model from 'ComfyUI/models/vae'"
def loadmodel(self, model_name, precision, parallel=False):
from .taehv import TAEHV
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]
model_path = folder_paths.get_full_path("vae_approx", model_name)
vae_sd = load_torch_file(model_path, safe_load=True)
vae = TAEHV(vae_sd, parallel=parallel)
vae.to(device = offload_device, dtype = dtype)
return (vae,)
class LoadWanVideoT5TextEncoder:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model_name": (folder_paths.get_filename_list("text_encoders"), {"tooltip": "These models are loaded from 'ComfyUI/models/text_encoders'"}),
"precision": (["fp32", "bf16"],
{"default": "bf16"}
),
},
"optional": {
"load_device": (["main_device", "offload_device"], {"default": "offload_device"}),
"quantization": (['disabled', 'fp8_e4m3fn'], {"default": 'disabled', "tooltip": "optional quantization method"}),
}
}
RETURN_TYPES = ("WANTEXTENCODER",)
RETURN_NAMES = ("wan_t5_model", )
FUNCTION = "loadmodel"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Loads Wan text_encoder model from 'ComfyUI/models/LLM'"
def loadmodel(self, model_name, precision, load_device="offload_device", quantization="disabled"):
text_encoder_load_device = device if load_device == "main_device" else offload_device
tokenizer_path = os.path.join(script_directory, "configs", "T5_tokenizer")
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]
model_path = folder_paths.get_full_path("text_encoders", model_name)
sd = load_torch_file(model_path, safe_load=True)
if "token_embedding.weight" not in sd and "shared.weight" not in sd:
raise ValueError("Invalid T5 text encoder model, this node expects the 'umt5-xxl' model")
if "scaled_fp8" in sd:
raise ValueError("Invalid T5 text encoder model, fp8 scaled is not supported by this node")
# Convert state dict keys from T5 format to the expected format
if "shared.weight" in sd:
log.info("Converting T5 text encoder model to the expected format...")
converted_sd = {}
for key, value in sd.items():
# Handle encoder block patterns
if key.startswith('encoder.block.'):
parts = key.split('.')
block_num = parts[2]
# Self-attention components
if 'layer.0.SelfAttention' in key:
if key.endswith('.k.weight'):
new_key = f"blocks.{block_num}.attn.k.weight"
elif key.endswith('.o.weight'):
new_key = f"blocks.{block_num}.attn.o.weight"
elif key.endswith('.q.weight'):
new_key = f"blocks.{block_num}.attn.q.weight"
elif key.endswith('.v.weight'):
new_key = f"blocks.{block_num}.attn.v.weight"
elif 'relative_attention_bias' in key:
new_key = f"blocks.{block_num}.pos_embedding.embedding.weight"
else:
new_key = key
# Layer norms
elif 'layer.0.layer_norm' in key:
new_key = f"blocks.{block_num}.norm1.weight"
elif 'layer.1.layer_norm' in key:
new_key = f"blocks.{block_num}.norm2.weight"
# Feed-forward components
elif 'layer.1.DenseReluDense' in key:
if 'wi_0' in key:
new_key = f"blocks.{block_num}.ffn.gate.0.weight"
elif 'wi_1' in key:
new_key = f"blocks.{block_num}.ffn.fc1.weight"
elif 'wo' in key:
new_key = f"blocks.{block_num}.ffn.fc2.weight"
else:
new_key = key
else:
new_key = key
elif key == "shared.weight":
new_key = "token_embedding.weight"
elif key == "encoder.final_layer_norm.weight":
new_key = "norm.weight"
else:
new_key = key
converted_sd[new_key] = value
sd = converted_sd
T5_text_encoder = T5EncoderModel(
text_len=512,
dtype=dtype,
device=text_encoder_load_device,
state_dict=sd,
tokenizer_path=tokenizer_path,
quantization=quantization
)
text_encoder = {
"model": T5_text_encoder,
"dtype": dtype,
"name": model_name,
}
return (text_encoder,)
class LoadWanVideoClipTextEncoder:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model_name": (folder_paths.get_filename_list("clip_vision") + folder_paths.get_filename_list("text_encoders"), {"tooltip": "These models are loaded from 'ComfyUI/models/clip_vision'"}),
"precision": (["fp16", "fp32", "bf16"],
{"default": "fp16"}
),
},
"optional": {
"load_device": (["main_device", "offload_device"], {"default": "offload_device"}),
}
}
RETURN_TYPES = ("CLIP_VISION",)
RETURN_NAMES = ("wan_clip_vision", )
FUNCTION = "loadmodel"
CATEGORY = "WanVideoWrapper"
DESCRIPTION = "Loads Wan clip_vision model from 'ComfyUI/models/clip_vision'"
def loadmodel(self, model_name, precision, load_device="offload_device"):
text_encoder_load_device = device if load_device == "main_device" else offload_device
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]
model_path = folder_paths.get_full_path("clip_vision", model_name)
# We also support legacy setups where the model is in the text_encoders folder
if model_path is None:
model_path = folder_paths.get_full_path("text_encoders", model_name)
sd = load_torch_file(model_path, safe_load=True)
if "log_scale" not in sd:
raise ValueError("Invalid CLIP model, this node expectes the 'open-clip-xlm-roberta-large-vit-huge-14' model")
clip_model = CLIPModel(dtype=dtype, device=device, state_dict=sd)
clip_model.model.to(text_encoder_load_device)
del sd
return (clip_model,)
NODE_CLASS_MAPPINGS = {
"WanVideoModelLoader": WanVideoModelLoader,
"WanVideoVAELoader": WanVideoVAELoader,
"WanVideoLoraSelect": WanVideoLoraSelect,
"WanVideoSetLoRAs": WanVideoSetLoRAs,
"WanVideoLoraBlockEdit": WanVideoLoraBlockEdit,
"WanVideoTinyVAELoader": WanVideoTinyVAELoader,
"WanVideoVACEModelSelect": WanVideoVACEModelSelect,
"WanVideoLoraSelectMulti": WanVideoLoraSelectMulti,
"WanVideoBlockSwap": WanVideoBlockSwap,
"WanVideoVRAMManagement": WanVideoVRAMManagement,
"WanVideoTorchCompileSettings": WanVideoTorchCompileSettings,
"LoadWanVideoT5TextEncoder": LoadWanVideoT5TextEncoder,
"LoadWanVideoClipTextEncoder": LoadWanVideoClipTextEncoder,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"WanVideoModelLoader": "WanVideo Model Loader",
"WanVideoVAELoader": "WanVideo VAE Loader",
"WanVideoLoraSelect": "WanVideo Lora Select",
"WanVideoSetLoRAs": "WanVideo Set LoRAs",
"WanVideoLoraBlockEdit": "WanVideo Lora Block Edit",
"WanVideoTinyVAELoader": "WanVideo Tiny VAE Loader",
"WanVideoVACEModelSelect": "WanVideo VACE Module Select",
"WanVideoLoraSelectMulti": "WanVideo Lora Select Multi",
"WanVideoBlockSwap": "WanVideo Block Swap",
"WanVideoVRAMManagement": "WanVideo VRAM Management",
"WanVideoTorchCompileSettings": "WanVideo Torch Compile Settings",
"LoadWanVideoT5TextEncoder": "WanVideo T5 Text Encoder Loader",
"LoadWanVideoClipTextEncoder": "WanVideo CLIP Text Encoder Loader",
}