1
0
mirror of https://github.com/kijai/ComfyUI-WanVideoWrapper.git synced 2026-01-26 23:41:35 +03:00
Files
kijai 8640bfad52 VRAM optimizations
Minor for almost everything, major for multitalk when using masks
2026-01-22 19:46:52 +02:00

439 lines
16 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
from einops import rearrange, repeat
import torch
import torch.nn as nn
from ..wanvideo.modules.attention import attention
def timestep_transform(
t,
shift=5.0,
num_timesteps=1000,
):
t = t / num_timesteps
# shift the timestep based on ratio
new_t = shift * t / (1 + (shift - 1) * t)
new_t = new_t * num_timesteps
return new_t
def add_noise(
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.IntTensor,
) -> torch.FloatTensor:
"""
compatible with diffusers add_noise()
"""
timesteps = timesteps.float() / 1000
timesteps = timesteps.view(timesteps.shape + (1,) * (len(noise.shape)-1))
return (1 - timesteps) * original_samples + timesteps * noise
def normalize_and_scale(column, source_range, target_range, epsilon=1e-8):
source_min, source_max = source_range
new_min, new_max = target_range
normalized = (column - source_min) / (source_max - source_min + epsilon)
scaled = normalized * (new_max - new_min) + new_min
return scaled
def rotate_half(x):
x = rearrange(x, "... (d r) -> ... d r", r=2)
x1, x2 = x.unbind(dim=-1)
x = torch.stack((-x2, x1), dim=-1)
return rearrange(x, "... d r -> ... (d r)")
def calculate_x_ref_attn_map(visual_q, ref_k, ref_target_masks, split_num=4):
scale = 1.0 / visual_q.shape[-1] ** 0.5
visual_q = visual_q.transpose(1, 2) * scale
B, H, x_seqlens, K = visual_q.shape
x_ref_attn_maps = []
for class_idx, ref_target_mask in enumerate(ref_target_masks):
ref_target_mask = ref_target_mask.view(1, 1, 1, -1)
x_ref_attnmap = torch.zeros(B, H, x_seqlens, device=visual_q.device, dtype=visual_q.dtype)
chunk_size = min(max(x_seqlens // split_num, 1), x_seqlens)
for i in range(0, x_seqlens, chunk_size):
end_i = min(i + chunk_size, x_seqlens)
attn_chunk = visual_q[:, :, i:end_i] @ ref_k.permute(0, 2, 3, 1) # B, H, chunk, ref_seqlens
# Apply softmax
attn_max = attn_chunk.max(dim=-1, keepdim=True).values
attn_chunk = (attn_chunk - attn_max).exp()
attn_sum = attn_chunk.sum(dim=-1, keepdim=True)
attn_chunk = attn_chunk / (attn_sum + 1e-8)
# Apply mask and sum
masked_attn = attn_chunk * ref_target_mask
x_ref_attnmap[:, :, i:end_i] = masked_attn.sum(-1) / (ref_target_mask.sum() + 1e-8)
del attn_chunk, masked_attn
# Average across heads
x_ref_attnmap = x_ref_attnmap.mean(dim=1) # B, x_seqlens
x_ref_attn_maps.append(x_ref_attnmap)
del visual_q, ref_k
return torch.cat(x_ref_attn_maps, dim=0)
def get_attn_map_with_target(visual_q, ref_k, shape, ref_target_masks=None, split_num=2):
"""Args:
query (torch.tensor): B M H K
key (torch.tensor): B M H K
shape (tuple): (N_t, N_h, N_w)
ref_target_masks: [B, N_h * N_w]
"""
N_t, N_h, N_w = shape
x_seqlens = N_h * N_w
ref_k = ref_k[:, :x_seqlens]
_, seq_lens, heads, _ = visual_q.shape
class_num, _ = ref_target_masks.shape
x_ref_attn_maps = torch.zeros(class_num, seq_lens).to(visual_q.device).to(visual_q.dtype)
split_chunk = heads // split_num
for i in range(split_num):
x_ref_attn_maps_perhead = calculate_x_ref_attn_map(visual_q[:, :, i*split_chunk:(i+1)*split_chunk, :], ref_k[:, :, i*split_chunk:(i+1)*split_chunk, :], ref_target_masks)
x_ref_attn_maps += x_ref_attn_maps_perhead
return x_ref_attn_maps / split_num
class RotaryPositionalEmbedding1D(nn.Module):
def __init__(self,
head_dim,
):
super().__init__()
self.head_dim = head_dim
self.base = 10000
def precompute_freqs_cis_1d(self, pos_indices):
freqs = 1.0 / (self.base ** (torch.arange(0, self.head_dim, 2)[: (self.head_dim // 2)].float() / self.head_dim))
freqs = freqs.to(pos_indices.device)
freqs = torch.einsum("..., f -> ... f", pos_indices.float(), freqs)
freqs = repeat(freqs, "... n -> ... (n r)", r=2)
return freqs
def forward(self, x, pos_indices):
"""1D RoPE.
Args:
query (torch.tensor): [B, head, seq, head_dim]
pos_indices (torch.tensor): [seq,]
Returns:
query with the same shape as input.
"""
freqs_cis = self.precompute_freqs_cis_1d(pos_indices)
in_dtype = x.dtype
x = x.float()
freqs_cis = freqs_cis.float().to(x.device)
cos = rearrange(freqs_cis.cos(), 'n d -> 1 1 n d')
sin = rearrange(freqs_cis.sin(), 'n d -> 1 1 n d')
# In-place rotation to save memory
x_rotated = rotate_half(x)
x.mul_(cos).add_(x_rotated * sin)
return x.to(in_dtype)
class AudioProjModel(nn.Module):
def __init__(
self,
seq_len=5,
seq_len_vf=12,
blocks=12,
channels=768,
intermediate_dim=512,
output_dim=768,
context_tokens=32,
norm_output_audio=False,
):
super().__init__()
self.seq_len = seq_len
self.blocks = blocks
self.channels = channels
self.input_dim = seq_len * blocks * channels
self.input_dim_vf = seq_len_vf * blocks * channels
self.intermediate_dim = intermediate_dim
self.context_tokens = context_tokens
self.output_dim = output_dim
# define multiple linear layers
self.proj1 = nn.Linear(self.input_dim, intermediate_dim)
self.proj1_vf = nn.Linear(self.input_dim_vf, intermediate_dim)
self.proj2 = nn.Linear(intermediate_dim, intermediate_dim)
self.proj3 = nn.Linear(intermediate_dim, context_tokens * output_dim)
self.norm = nn.LayerNorm(output_dim) if norm_output_audio else nn.Identity()
def forward(self, audio_embeds, audio_embeds_vf):
video_length = audio_embeds.shape[1] + audio_embeds_vf.shape[1]
B, _, _, S, C = audio_embeds.shape
# process audio of first frame
audio_embeds = rearrange(audio_embeds, "bz f w b c -> (bz f) w b c")
batch_size, window_size, blocks, channels = audio_embeds.shape
audio_embeds = audio_embeds.view(batch_size, window_size * blocks * channels)
# process audio of latter frame
audio_embeds_vf = rearrange(audio_embeds_vf, "bz f w b c -> (bz f) w b c")
batch_size_vf, window_size_vf, blocks_vf, channels_vf = audio_embeds_vf.shape
audio_embeds_vf = audio_embeds_vf.view(batch_size_vf, window_size_vf * blocks_vf * channels_vf)
# first projection
audio_embeds = torch.relu(self.proj1(audio_embeds))
audio_embeds_vf = torch.relu(self.proj1_vf(audio_embeds_vf))
audio_embeds = rearrange(audio_embeds, "(bz f) c -> bz f c", bz=B)
audio_embeds_vf = rearrange(audio_embeds_vf, "(bz f) c -> bz f c", bz=B)
audio_embeds_c = torch.concat([audio_embeds, audio_embeds_vf], dim=1)
batch_size_c, N_t, C_a = audio_embeds_c.shape
audio_embeds_c = audio_embeds_c.view(batch_size_c*N_t, C_a)
# second projection
audio_embeds_c = torch.relu(self.proj2(audio_embeds_c))
context_tokens = self.proj3(audio_embeds_c).reshape(batch_size_c*N_t, self.context_tokens, self.output_dim)
# normalization and reshape
context_tokens = self.norm(context_tokens.to(self.norm.weight.dtype)).to(context_tokens.dtype)
context_tokens = rearrange(context_tokens, "(bz f) m c -> bz f m c", f=video_length)
return context_tokens
#@torch.compiler.disable()
class SingleStreamAttention(nn.Module):
def __init__(
self,
dim: int,
encoder_hidden_states_dim: int,
num_heads: int,
qkv_bias: bool,
attention_mode: str = 'sdpa',
) -> None:
super().__init__()
assert dim % num_heads == 0, "dim should be divisible by num_heads"
self.dim = dim
self.encoder_hidden_states_dim = encoder_hidden_states_dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.attention_mode = attention_mode
self.q_linear = nn.Linear(dim, dim, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.kv_linear = nn.Linear(encoder_hidden_states_dim, dim * 2, bias=qkv_bias)
def forward(self, x: torch.Tensor, encoder_hidden_states: torch.Tensor, shape=None) -> torch.Tensor:
N_t, N_h, N_w = shape
expected_tokens = N_t * N_h * N_w
actual_tokens = x.shape[1]
x_extra = None
if actual_tokens != expected_tokens:
x_extra = x[:, -N_h * N_w:, :]
x = x[:, :-N_h * N_w, :]
N_t = N_t - 1
B = x.shape[0]
S = N_h * N_w
x = x.view(B * N_t, S, self.dim)
# get q for hidden_state
q = self.q_linear(x).view(B * N_t, S, self.num_heads, self.head_dim)
# get kv from encoder_hidden_states # shape: (B, N, num_heads, head_dim)
kv = self.kv_linear(encoder_hidden_states)
encoder_k, encoder_v = kv.view(B * N_t, encoder_hidden_states.shape[1], 2, self.num_heads, self.head_dim).unbind(2)
x = attention(q, encoder_k, encoder_v, attention_mode=self.attention_mode)
# linear transform
x = self.proj(x.reshape(B * N_t, S, self.dim))
x = x.view(B, N_t * S, self.dim)
if x_extra is not None:
x = torch.cat([x, torch.zeros_like(x_extra)], dim=1)
return x
class SingleStreamMultiAttention(SingleStreamAttention):
"""Multi-speaker rotary-position cross-attention.
This implementation generalises the original 2-speaker logic to an arbitrary
number of voices. Each speaker is allocated a contiguous *class_interval*
segment inside a shared *class_range* rotary bucket. The centre of each
bucket is applied to that speaker's KV tokens while queries are modulated
per-token according to which speaker dominates the pixel.
"""
def __init__(
self,
dim: int,
encoder_hidden_states_dim: int,
num_heads: int,
qkv_bias: bool,
class_range: int = 24,
class_interval: int = 4,
attention_mode: str = 'sdpa',
) -> None:
super().__init__(
dim=dim,
encoder_hidden_states_dim=encoder_hidden_states_dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attention_mode=attention_mode,
)
# Rotary-embedding layout parameters
self.class_interval = class_interval
self.class_range = class_range
self.max_humans = self.class_range // self.class_interval
# Constant bucket used for background tokens
self.rope_bak = int(self.class_range // 2)
self.rope_1d = RotaryPositionalEmbedding1D(self.head_dim)
self.attention_mode = attention_mode
def forward(
self,
x: torch.Tensor,
encoder_hidden_states: torch.Tensor,
shape=None,
x_ref_attn_map=None,
human_num=None,
) -> torch.Tensor:
encoder_hidden_states = encoder_hidden_states.squeeze(0)
# Single-speaker fall-through
if human_num is None or human_num <= 1:
return super().forward(x, encoder_hidden_states, shape)
N_t, N_h, N_w = shape
x_extra = None
if x.shape[0] * N_t != encoder_hidden_states.shape[0]:
x_extra = x[:, -N_h * N_w:, :]
x = x[:, :-N_h * N_w, :]
N_t = N_t - 1
x = rearrange(x, "B (N_t S) C -> (B N_t) S C", N_t=N_t)
# Query projection
B, N, C = x.shape
q = self.q_linear(x)
q = q.view(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
if human_num == 2:
# Use `class_range` logic for exactly 2 speakers
rope_h1 = (0, self.class_interval)
rope_h2 = (self.class_range - self.class_interval, self.class_range)
rope_bak = int(self.class_range // 2)
# Normalize and scale attention maps for each speaker
max_values = x_ref_attn_map.max(1).values[:, None, None]
min_values = x_ref_attn_map.min(1).values[:, None, None]
max_min_values = torch.cat([max_values, min_values], dim=2)
human1_max_value, human1_min_value = max_min_values[0, :, 0].max(), max_min_values[0, :, 1].min()
human2_max_value, human2_min_value = max_min_values[1, :, 0].max(), max_min_values[1, :, 1].min()
human1 = normalize_and_scale(x_ref_attn_map[0], (human1_min_value, human1_max_value), rope_h1)
human2 = normalize_and_scale(x_ref_attn_map[1], (human2_min_value, human2_max_value), rope_h2)
back = torch.full((x_ref_attn_map.size(1),), rope_bak, dtype=human1.dtype, device=human1.device)
# Token-wise speaker dominance
max_indices = x_ref_attn_map.argmax(dim=0)
normalized_map = torch.stack([human1, human2, back], dim=1)
normalized_pos = normalized_map[torch.arange(x_ref_attn_map.size(1)), max_indices]
else:
# General case for more than 2 speakers
rope_ranges = [
(i * self.class_interval, (i + 1) * self.class_interval)
for i in range(human_num)
]
# Normalize each speaker's attention map into its own bucket
human_norm_list = []
for idx in range(human_num):
attn_map = x_ref_attn_map[idx]
att_min, att_max = attn_map.min(), attn_map.max()
human_norm = normalize_and_scale(
attn_map, (att_min, att_max), rope_ranges[idx]
)
human_norm_list.append(human_norm)
# Background constant bucket
back = torch.full(
(x_ref_attn_map.size(1),),
self.rope_bak,
dtype=x_ref_attn_map.dtype,
device=x_ref_attn_map.device,
)
# Token-wise speaker dominance
max_indices = x_ref_attn_map.argmax(dim=0)
normalized_map = torch.stack(human_norm_list + [back], dim=1)
normalized_pos = normalized_map[torch.arange(x_ref_attn_map.size(1)), max_indices]
# Apply rotary to Q
q = rearrange(q, "(B N_t) H S C -> B H (N_t S) C", N_t=N_t)
q = self.rope_1d(q, normalized_pos)
q = rearrange(q, "B H (N_t S) C -> (B N_t) H S C", N_t=N_t)
# Keys / Values
_, N_a, _ = encoder_hidden_states.shape
encoder_kv = self.kv_linear(encoder_hidden_states)
encoder_kv = encoder_kv.view(B, N_a, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
encoder_k, encoder_v = encoder_kv.unbind(0)
# Rotary for keys assign centre of each speaker bucket to its context tokens
if human_num == 2:
per_frame = torch.zeros(N_a, dtype=encoder_k.dtype, device=encoder_k.device)
per_frame[: per_frame.size(0) // 2] = (rope_h1[0] + rope_h1[1]) / 2
per_frame[per_frame.size(0) // 2 :] = (rope_h2[0] + rope_h2[1]) / 2
encoder_pos = torch.cat([per_frame] * N_t, dim=0)
else:
tokens_per_human = N_a // human_num
encoder_pos_list = []
for i in range(human_num):
start, end = rope_ranges[i]
centre = (start + end) / 2
encoder_pos_list.append(
torch.full(
(tokens_per_human,), centre, dtype=encoder_k.dtype, device=encoder_k.device
)
)
encoder_pos = torch.cat(encoder_pos_list * N_t, dim=0)
encoder_k = rearrange(encoder_k, "(B N_t) H S C -> B H (N_t S) C", N_t=N_t)
encoder_k = self.rope_1d(encoder_k, encoder_pos)
encoder_k = rearrange(encoder_k, "B H (N_t S) C -> (B N_t) H S C", N_t=N_t)
# Final attention
q = rearrange(q, "B H M K -> B M H K")
encoder_k = rearrange(encoder_k, "B H M K -> B M H K")
encoder_v = rearrange(encoder_v, "B H M K -> B M H K")
x = attention(
q, encoder_k, encoder_v, attention_mode=self.attention_mode
)
# Linear projection
x = x.reshape(B, N, C)
x = self.proj(x)
# Restore original layout
x = rearrange(x, "(B N_t) S C -> B (N_t S) C", N_t=N_t)
if x_extra is not None:
x = torch.cat([x, torch.zeros_like(x_extra)], dim=1)
return x