You've already forked ComfyUI-WanVideoWrapper
mirror of
https://github.com/kijai/ComfyUI-WanVideoWrapper.git
synced 2026-01-26 23:41:35 +03:00
187 lines
7.5 KiB
Python
187 lines
7.5 KiB
Python
import numpy as np
|
|
import os
|
|
import torch
|
|
from einops import rearrange
|
|
|
|
script_directory = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
class Camera(object):
|
|
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
|
|
"""
|
|
def __init__(self, entry):
|
|
fx, fy, cx, cy = entry[1:5]
|
|
self.fx = fx
|
|
self.fy = fy
|
|
self.cx = cx
|
|
self.cy = cy
|
|
w2c_mat = np.array(entry[7:]).reshape(3, 4)
|
|
w2c_mat_4x4 = np.eye(4)
|
|
w2c_mat_4x4[:3, :] = w2c_mat
|
|
self.w2c_mat = w2c_mat_4x4
|
|
self.c2w_mat = np.linalg.inv(w2c_mat_4x4)
|
|
|
|
def custom_meshgrid(*args):
|
|
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
|
|
"""
|
|
# ref: https://pytorch.org/docs/stable/generated/torch.meshgrid.html?highlight=meshgrid#torch.meshgrid
|
|
return torch.meshgrid(*args)
|
|
|
|
|
|
def get_relative_pose(cam_params):
|
|
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
|
|
"""
|
|
abs_w2cs = [cam_param.w2c_mat for cam_param in cam_params]
|
|
abs_c2ws = [cam_param.c2w_mat for cam_param in cam_params]
|
|
cam_to_origin = 0
|
|
target_cam_c2w = np.array([
|
|
[1, 0, 0, 0],
|
|
[0, 1, 0, -cam_to_origin],
|
|
[0, 0, 1, 0],
|
|
[0, 0, 0, 1]
|
|
])
|
|
abs2rel = target_cam_c2w @ abs_w2cs[0]
|
|
ret_poses = [target_cam_c2w, ] + [abs2rel @ abs_c2w for abs_c2w in abs_c2ws[1:]]
|
|
ret_poses = np.array(ret_poses, dtype=np.float32)
|
|
return ret_poses
|
|
|
|
def ray_condition(K, c2w, H, W, device):
|
|
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
|
|
"""
|
|
# c2w: B, V, 4, 4
|
|
# K: B, V, 4
|
|
|
|
B = K.shape[0]
|
|
|
|
j, i = custom_meshgrid(
|
|
torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype),
|
|
torch.linspace(0, W - 1, W, device=device, dtype=c2w.dtype),
|
|
)
|
|
i = i.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW]
|
|
j = j.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW]
|
|
|
|
fx, fy, cx, cy = K.chunk(4, dim=-1) # B,V, 1
|
|
|
|
zs = torch.ones_like(i) # [B, HxW]
|
|
xs = (i - cx) / fx * zs
|
|
ys = (j - cy) / fy * zs
|
|
zs = zs.expand_as(ys)
|
|
|
|
directions = torch.stack((xs, ys, zs), dim=-1) # B, V, HW, 3
|
|
directions = directions / directions.norm(dim=-1, keepdim=True) # B, V, HW, 3
|
|
|
|
rays_d = directions @ c2w[..., :3, :3].transpose(-1, -2) # B, V, 3, HW
|
|
rays_o = c2w[..., :3, 3] # B, V, 3
|
|
rays_o = rays_o[:, :, None].expand_as(rays_d) # B, V, 3, HW
|
|
# c2w @ dirctions
|
|
rays_dxo = torch.cross(rays_o, rays_d)
|
|
plucker = torch.cat([rays_dxo, rays_d], dim=-1)
|
|
plucker = plucker.reshape(B, c2w.shape[1], H, W, 6) # B, V, H, W, 6
|
|
# plucker = plucker.permute(0, 1, 4, 2, 3)
|
|
return plucker
|
|
|
|
def process_poses(poses, width=672, height=384, original_pose_width=1280, original_pose_height=720, device='cpu', return_poses=False):
|
|
"""Modified from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
|
|
"""
|
|
|
|
cam_params = [[float(x) for x in pose] for pose in poses]
|
|
if return_poses:
|
|
return cam_params
|
|
else:
|
|
cam_params = [Camera(cam_param) for cam_param in cam_params]
|
|
|
|
sample_wh_ratio = width / height
|
|
pose_wh_ratio = original_pose_width / original_pose_height # Assuming placeholder ratios, change as needed
|
|
|
|
if pose_wh_ratio > sample_wh_ratio:
|
|
resized_ori_w = height * pose_wh_ratio
|
|
for cam_param in cam_params:
|
|
cam_param.fx = resized_ori_w * cam_param.fx / width
|
|
else:
|
|
resized_ori_h = width / pose_wh_ratio
|
|
for cam_param in cam_params:
|
|
cam_param.fy = resized_ori_h * cam_param.fy / height
|
|
|
|
intrinsic = np.asarray([[cam_param.fx * width,
|
|
cam_param.fy * height,
|
|
cam_param.cx * width,
|
|
cam_param.cy * height]
|
|
for cam_param in cam_params], dtype=np.float32)
|
|
|
|
K = torch.as_tensor(intrinsic)[None] # [1, 1, 4]
|
|
c2ws = get_relative_pose(cam_params) # Assuming this function is defined elsewhere
|
|
c2ws = torch.as_tensor(c2ws)[None] # [1, n_frame, 4, 4]
|
|
plucker_embedding = ray_condition(K, c2ws, height, width, device=device)[0].permute(0, 3, 1, 2).contiguous() # V, 6, H, W
|
|
plucker_embedding = plucker_embedding[None]
|
|
plucker_embedding = rearrange(plucker_embedding, "b f c h w -> b f h w c")[0]
|
|
return plucker_embedding
|
|
|
|
class WanVideoFunCameraEmbeds:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"poses": ("CAMERACTRL_POSES", ),
|
|
"width": ("INT", {"default": 832, "min": 64, "max": 2048, "step": 8, "tooltip": "Width of the image to encode"}),
|
|
"height": ("INT", {"default": 480, "min": 64, "max": 29048, "step": 8, "tooltip": "Height of the image to encode"}),
|
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Strength of the camera motion"}),
|
|
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Start percent of the steps to apply camera motion"}),
|
|
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "End percent of the steps to apply camera motion"}),
|
|
},
|
|
# "optional": {
|
|
# "fun_ref_image": ("LATENT", {"tooltip": "Reference latent for the Fun 1.1 -model"}),
|
|
# }
|
|
}
|
|
|
|
|
|
RETURN_TYPES = ("WANVIDIMAGE_EMBEDS",)
|
|
RETURN_NAMES = ("image_embeds",)
|
|
FUNCTION = "process"
|
|
CATEGORY = "WanVideoWrapper"
|
|
|
|
def process(self, poses, width, height, strength, start_percent, end_percent, fun_ref_image=None):
|
|
num_frames = len(poses)
|
|
|
|
control_camera_video = process_poses(poses, width, height)
|
|
control_camera_video = control_camera_video.permute([3, 0, 1, 2]).unsqueeze(0)
|
|
print("control_camera_video.shape", control_camera_video.shape)
|
|
|
|
# Rearrange dimensions
|
|
# Concatenate and transpose dimensions
|
|
control_camera_latents = torch.concat(
|
|
[
|
|
torch.repeat_interleave(control_camera_video[:, :, 0:1], repeats=4, dim=2),
|
|
control_camera_video[:, :, 1:]
|
|
], dim=2
|
|
).transpose(1, 2)
|
|
|
|
# Reshape, transpose, and view into desired shape
|
|
b, f, c, h, w = control_camera_latents.shape
|
|
control_camera_latents = control_camera_latents.contiguous().view(b, f // 4, 4, c, h, w).transpose(2, 3)
|
|
control_camera_latents = control_camera_latents.contiguous().view(b, f // 4, c * 4, h, w).transpose(1, 2)
|
|
print("control_camera_latents.shape", control_camera_latents.shape)
|
|
|
|
vae_stride = (4, 8, 8)
|
|
|
|
target_shape = (16, (num_frames - 1) // vae_stride[0] + 1,
|
|
height // vae_stride[1],
|
|
width // vae_stride[2])
|
|
|
|
embeds = {
|
|
"target_shape": target_shape,
|
|
"num_frames": num_frames,
|
|
"control_embeds": {
|
|
"control_camera_latents": control_camera_latents * strength,
|
|
"control_camera_start_percent": start_percent,
|
|
"control_camera_end_percent": end_percent,
|
|
"fun_ref_image": fun_ref_image["samples"][:,:, 0] if fun_ref_image is not None else None,
|
|
}
|
|
}
|
|
|
|
return (embeds,)
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"WanVideoFunCameraEmbeds": WanVideoFunCameraEmbeds,
|
|
}
|
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
|
"WanVideoFunCameraEmbeds": "WanVideo FunCamera Embeds",
|
|
}
|