1
0
mirror of https://github.com/kijai/ComfyUI-WanVideoWrapper.git synced 2026-01-26 23:41:35 +03:00
Files
ComfyUI-WanVideoWrapper/Ovi/vae/edm2_utils.py
kijai 139bdf827f Squashed commit of the following:
commit 73dd1a06d33953912f5dd684f168028b14e42a36
Author: kijai <40791699+kijai@users.noreply.github.com>
Date:   Mon Oct 13 19:47:38 2025 +0300

    cleanup

commit 39bc2cecf493e2eb176b55e8841d933f0da1ec39
Author: kijai <40791699+kijai@users.noreply.github.com>
Date:   Mon Oct 13 19:24:20 2025 +0300

    Allow scheduling ovi cfg

commit 2c153c5f324dbd59670ad9c51a7995459504a3cd
Merge: dba7667 32eb6b4
Author: kijai <40791699+kijai@users.noreply.github.com>
Date:   Mon Oct 13 17:48:20 2025 +0300

    Merge branch 'main' into ovi

commit dba76674c71af7bf94c82834a0b0e40d94043c99
Merge: 0f11a43 5a0456e
Author: kijai <40791699+kijai@users.noreply.github.com>
Date:   Sun Oct 12 22:45:43 2025 +0300

    Merge branch 'main' into ovi

commit 0f11a439622799ad8070f8a2b8cc8e6a041b761d
Merge: 0999f50 e2d8c9b
Author: kijai <40791699+kijai@users.noreply.github.com>
Date:   Sat Oct 11 07:48:06 2025 +0300

    Merge branch 'main' into ovi

commit 0999f50cfe025290cd7ce88a8dd1acff0b38d9bd
Merge: d45df1f f1d1c83
Author: kijai <40791699+kijai@users.noreply.github.com>
Date:   Fri Oct 10 22:16:09 2025 +0300

    Merge branch 'main' into ovi

commit d45df1fb5b7c629b15eabc197357d62bdc232aaf
Author: kijai <40791699+kijai@users.noreply.github.com>
Date:   Thu Oct 9 20:21:37 2025 +0300

    Remove dependency for librosa

commit d8e7533fdf7eab1d2489c3e025a908c02d997444
Author: kijai <40791699+kijai@users.noreply.github.com>
Date:   Thu Oct 9 19:57:28 2025 +0300

    Remove omegaconf dependency

commit f4e27ff018e98cb5b09655dceda399baea36b240
Author: kijai <40791699+kijai@users.noreply.github.com>
Date:   Thu Oct 9 19:31:06 2025 +0300

    Fix VACE

commit 35d3df39294831e5e7568b6f7e16d2ecf2d790a0
Author: kijai <40791699+kijai@users.noreply.github.com>
Date:   Thu Oct 9 00:26:40 2025 +0300

    small update

commit 96f8ea1d26869ab7e49e12a07f19d5d5a2023253
Author: kijai <40791699+kijai@users.noreply.github.com>
Date:   Wed Oct 8 22:32:57 2025 +0300

    Create wanvideo_2_2_5B_ovi_testing.json

commit a2511be73b9da7019fd21aeb0b521af941c09150
Author: kijai <40791699+kijai@users.noreply.github.com>
Date:   Wed Oct 8 22:32:54 2025 +0300

    Update nodes_sampler.py

commit d3688b8db71452ea1f7c9a2bc0216441d524e56c
Author: kijai <40791699+kijai@users.noreply.github.com>
Date:   Wed Oct 8 21:43:02 2025 +0300

    Allow EasyCache to work with ovi

commit 586d9148a0306ef5d30e9a971a9c3be4cd3ecc97
Author: kijai <40791699+kijai@users.noreply.github.com>
Date:   Wed Oct 8 19:09:06 2025 +0300

    Update model.py

commit 61eedd2839decdb7d4c2ddd5f1310fdaf49d36ad
Author: kijai <40791699+kijai@users.noreply.github.com>
Date:   Wed Oct 8 19:09:02 2025 +0300

    I2V fix

commit a97fcb1b9ae9fb7bbfdf668c24816e014a1b58d1
Author: kijai <40791699+kijai@users.noreply.github.com>
Date:   Wed Oct 8 17:57:28 2025 +0300

    Add nodes to set audio latent size

commit d41e42a697f3d561dabbc22566f633b5f1bbd952
Author: kijai <40791699+kijai@users.noreply.github.com>
Date:   Wed Oct 8 16:42:04 2025 +0300

    Support loading mmaudio vae from .safetensors

commit 1b0e28ec41e3c97fe1f2f057fef9b9bbcb87bca7
Author: kijai <40791699+kijai@users.noreply.github.com>
Date:   Wed Oct 8 16:19:53 2025 +0300

    Update nodes_sampler.py

commit fbd18f45fe85ede8edcb5aebaea7ceb5b6eab5a2
Author: kijai <40791699+kijai@users.noreply.github.com>
Date:   Wed Oct 8 10:16:44 2025 +0300

    Fixes for other workflows

commit b06993b637198f7fad92208f3b3dc9a7d7f57c7f
Author: kijai <40791699+kijai@users.noreply.github.com>
Date:   Wed Oct 8 09:46:27 2025 +0300

    initial commit

    T2V works
2025-10-13 20:16:53 +03:00

169 lines
5.4 KiB
Python

# Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is licensed under a Creative Commons
# Attribution-NonCommercial-ShareAlike 4.0 International License.
# You should have received a copy of the license along with this
# work. If not, see http://creativecommons.org/licenses/by-nc-sa/4.0/
"""Improved diffusion model architecture proposed in the paper
"Analyzing and Improving the Training Dynamics of Diffusion Models"."""
import numpy as np
import torch
#----------------------------------------------------------------------------
# Variant of constant() that inherits dtype and device from the given
# reference tensor by default.
_constant_cache = dict()
def constant(value, shape=None, dtype=None, device=None, memory_format=None):
value = np.asarray(value)
if shape is not None:
shape = tuple(shape)
if dtype is None:
dtype = torch.get_default_dtype()
if device is None:
device = torch.device('cpu')
if memory_format is None:
memory_format = torch.contiguous_format
key = (value.shape, value.dtype, value.tobytes(), shape, dtype, device, memory_format)
tensor = _constant_cache.get(key, None)
if tensor is None:
tensor = torch.as_tensor(value.copy(), dtype=dtype, device=device)
if shape is not None:
tensor, _ = torch.broadcast_tensors(tensor, torch.empty(shape))
tensor = tensor.contiguous(memory_format=memory_format)
_constant_cache[key] = tensor
return tensor
def const_like(ref, value, shape=None, dtype=None, device=None, memory_format=None):
if dtype is None:
dtype = ref.dtype
if device is None:
device = ref.device
return constant(value, shape=shape, dtype=dtype, device=device, memory_format=memory_format)
#----------------------------------------------------------------------------
# Normalize given tensor to unit magnitude with respect to the given
# dimensions. Default = all dimensions except the first.
def normalize(x, dim=None, eps=1e-4):
if dim is None:
dim = list(range(1, x.ndim))
norm = torch.linalg.vector_norm(x, dim=dim, keepdim=True, dtype=torch.float32)
norm = torch.add(eps, norm, alpha=np.sqrt(norm.numel() / x.numel()))
return x / norm.to(x.dtype)
class Normalize(torch.nn.Module):
def __init__(self, dim=None, eps=1e-4):
super().__init__()
self.dim = dim
self.eps = eps
def forward(self, x):
return normalize(x, dim=self.dim, eps=self.eps)
#----------------------------------------------------------------------------
# Upsample or downsample the given tensor with the given filter,
# or keep it as is.
def resample(x, f=[1, 1], mode='keep'):
if mode == 'keep':
return x
f = np.float32(f)
assert f.ndim == 1 and len(f) % 2 == 0
pad = (len(f) - 1) // 2
f = f / f.sum()
f = np.outer(f, f)[np.newaxis, np.newaxis, :, :]
f = const_like(x, f)
c = x.shape[1]
if mode == 'down':
return torch.nn.functional.conv2d(x,
f.tile([c, 1, 1, 1]),
groups=c,
stride=2,
padding=(pad, ))
assert mode == 'up'
return torch.nn.functional.conv_transpose2d(x, (f * 4).tile([c, 1, 1, 1]),
groups=c,
stride=2,
padding=(pad, ))
#----------------------------------------------------------------------------
# Magnitude-preserving SiLU (Equation 81).
def mp_silu(x):
return torch.nn.functional.silu(x) / 0.596
class MPSiLU(torch.nn.Module):
def forward(self, x):
return mp_silu(x)
#----------------------------------------------------------------------------
# Magnitude-preserving sum (Equation 88).
def mp_sum(a, b, t=0.5):
return a.lerp(b, t) / np.sqrt((1 - t)**2 + t**2)
#----------------------------------------------------------------------------
# Magnitude-preserving concatenation (Equation 103).
def mp_cat(a, b, dim=1, t=0.5):
Na = a.shape[dim]
Nb = b.shape[dim]
C = np.sqrt((Na + Nb) / ((1 - t)**2 + t**2))
wa = C / np.sqrt(Na) * (1 - t)
wb = C / np.sqrt(Nb) * t
return torch.cat([wa * a, wb * b], dim=dim)
#----------------------------------------------------------------------------
# Magnitude-preserving convolution or fully-connected layer (Equation 47)
# with force weight normalization (Equation 66).
class MPConv1D(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size):
super().__init__()
self.out_channels = out_channels
self.weight = torch.nn.Parameter(torch.randn(out_channels, in_channels, kernel_size))
self.weight_norm_removed = False
def forward(self, x, gain=1):
assert self.weight_norm_removed, 'call remove_weight_norm() before inference'
w = self.weight * gain
if w.ndim == 2:
return x @ w.t()
assert w.ndim == 3
return torch.nn.functional.conv1d(x, w, padding=(w.shape[-1] // 2, ))
def remove_weight_norm(self):
w = self.weight.to(torch.float32)
w = normalize(w) # traditional weight normalization
w = w / np.sqrt(w[0].numel())
w = w.to(self.weight.dtype)
self.weight.data.copy_(w)
self.weight_norm_removed = True
return self