You've already forked ComfyUI-WanVideoWrapper
mirror of
https://github.com/kijai/ComfyUI-WanVideoWrapper.git
synced 2026-01-28 12:20:55 +03:00
3058 lines
136 KiB
Python
3058 lines
136 KiB
Python
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
|
import math
|
|
import torch
|
|
import torch.nn as nn
|
|
from einops import repeat, rearrange
|
|
from ...enhance_a_video.enhance import get_feta_scores
|
|
import time
|
|
from contextlib import nullcontext
|
|
|
|
try:
|
|
from ..radial_attention.attn_mask import RadialSpargeSageAttn, RadialSpargeSageAttnDense, MaskMap
|
|
except:
|
|
pass
|
|
|
|
from .attention import attention
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
import gc
|
|
|
|
from ...utils import log, get_module_memory_mb
|
|
from ...cache_methods.cache_methods import TeaCacheState, MagCacheState, EasyCacheState, relative_l1_distance
|
|
from ...multitalk.multitalk import get_attn_map_with_target
|
|
from ...echoshot.echoshot import rope_apply_z, rope_apply_c, rope_apply_echoshot
|
|
|
|
from ...MTV.mtv import apply_rotary_emb
|
|
|
|
from comfy import model_management as mm
|
|
|
|
__all__ = ['WanModel']
|
|
|
|
class AdaLayerNorm(nn.Module):
|
|
def __init__(self, embedding_dim, output_dim=None, norm_elementwise_affine=False, norm_eps=1e-5):
|
|
super().__init__()
|
|
|
|
output_dim = output_dim or embedding_dim * 2
|
|
|
|
self.silu = nn.SiLU()
|
|
self.linear = nn.Linear(embedding_dim, output_dim)
|
|
self.norm = nn.LayerNorm(output_dim // 2, norm_eps, norm_elementwise_affine)
|
|
|
|
def forward(self, x, temb):
|
|
temb = self.linear(self.silu(temb))
|
|
shift, scale = temb.chunk(2, dim=1)
|
|
shift = shift[:, None, :]
|
|
scale = scale[:, None, :]
|
|
x = self.norm(x) * (1 + scale) + shift
|
|
return x
|
|
|
|
class FramePackMotioner(nn.Module):#from comfy.ldm.wan.model
|
|
def __init__(
|
|
self,
|
|
inner_dim=1024,
|
|
num_heads=16, # Used to indicate the number of heads in the backbone network; unrelated to this module's design
|
|
zip_frame_buckets=[1, 2, 16], # Three numbers representing the number of frames sampled for patch operations from the nearest to the farthest frames
|
|
drop_mode="drop", # If not "drop", it will use "padd", meaning padding instead of deletion
|
|
):
|
|
super().__init__()
|
|
self.proj = nn.Conv3d(16, inner_dim, kernel_size=(1, 2, 2), stride=(1, 2, 2))
|
|
self.proj_2x = nn.Conv3d(16, inner_dim, kernel_size=(2, 4, 4), stride=(2, 4, 4))
|
|
self.proj_4x = nn.Conv3d(16, inner_dim, kernel_size=(4, 8, 8), stride=(4, 8, 8))
|
|
self.zip_frame_buckets = zip_frame_buckets
|
|
|
|
self.inner_dim = inner_dim
|
|
self.num_heads = num_heads
|
|
self.drop_mode = drop_mode
|
|
|
|
def forward(self, motion_latents, rope_embedder, add_last_motion=2):
|
|
lat_height, lat_width = motion_latents.shape[3], motion_latents.shape[4]
|
|
padd_lat = torch.zeros(motion_latents.shape[0], 16, sum(self.zip_frame_buckets), lat_height, lat_width).to(device=motion_latents.device, dtype=motion_latents.dtype)
|
|
overlap_frame = min(padd_lat.shape[2], motion_latents.shape[2])
|
|
if overlap_frame > 0:
|
|
padd_lat[:, :, -overlap_frame:] = motion_latents[:, :, -overlap_frame:]
|
|
|
|
if add_last_motion < 2 and self.drop_mode != "drop":
|
|
zero_end_frame = sum(self.zip_frame_buckets[:len(self.zip_frame_buckets) - add_last_motion - 1])
|
|
padd_lat[:, :, -zero_end_frame:] = 0
|
|
|
|
clean_latents_4x, clean_latents_2x, clean_latents_post = padd_lat[:, :, -sum(self.zip_frame_buckets):, :, :].split(self.zip_frame_buckets[::-1], dim=2) # 16, 2 ,1
|
|
|
|
# patchfy
|
|
clean_latents_post = self.proj(clean_latents_post).flatten(2).transpose(1, 2)
|
|
clean_latents_2x = self.proj_2x(clean_latents_2x)
|
|
l_2x_shape = clean_latents_2x.shape
|
|
clean_latents_2x = clean_latents_2x.flatten(2).transpose(1, 2)
|
|
clean_latents_4x = self.proj_4x(clean_latents_4x)
|
|
l_4x_shape = clean_latents_4x.shape
|
|
clean_latents_4x = clean_latents_4x.flatten(2).transpose(1, 2)
|
|
|
|
if add_last_motion < 2 and self.drop_mode == "drop":
|
|
clean_latents_post = clean_latents_post[:, :0] if add_last_motion < 2 else clean_latents_post
|
|
clean_latents_2x = clean_latents_2x[:, :0] if add_last_motion < 1 else clean_latents_2x
|
|
|
|
motion_lat = torch.cat([clean_latents_post, clean_latents_2x, clean_latents_4x], dim=1)
|
|
|
|
rope_post = rope_embedder.rope_encode_comfy(1, lat_height, lat_width, t_start=-1, device=motion_latents.device, dtype=motion_latents.dtype)
|
|
rope_2x = rope_embedder.rope_encode_comfy(1, lat_height, lat_width, t_start=-3, steps_h=l_2x_shape[-2], steps_w=l_2x_shape[-1], device=motion_latents.device, dtype=motion_latents.dtype)
|
|
rope_4x = rope_embedder.rope_encode_comfy(4, lat_height, lat_width, t_start=-19, steps_h=l_4x_shape[-2], steps_w=l_4x_shape[-1], device=motion_latents.device, dtype=motion_latents.dtype)
|
|
|
|
rope = torch.cat([rope_post, rope_2x, rope_4x], dim=1)
|
|
return motion_lat, rope
|
|
|
|
def zero_module(module):
|
|
for p in module.parameters():
|
|
p.detach().zero_()
|
|
return module
|
|
|
|
def torch_dfs(model: nn.Module, parent_name='root'):
|
|
module_names, modules = [], []
|
|
current_name = parent_name if parent_name else 'root'
|
|
module_names.append(current_name)
|
|
modules.append(model)
|
|
|
|
for name, child in model.named_children():
|
|
if parent_name:
|
|
child_name = f'{parent_name}.{name}'
|
|
else:
|
|
child_name = name
|
|
child_modules, child_names = torch_dfs(child, child_name)
|
|
module_names += child_names
|
|
modules += child_modules
|
|
return modules, module_names
|
|
|
|
#from comfy.ldm.flux.math import apply_rope as apply_rope_comfy
|
|
def apply_rope_comfy(xq, xk, freqs_cis):
|
|
xq_ = xq.to(dtype=freqs_cis.dtype).reshape(*xq.shape[:-1], -1, 1, 2)
|
|
xk_ = xk.to(dtype=freqs_cis.dtype).reshape(*xk.shape[:-1], -1, 1, 2)
|
|
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
|
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
|
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|
|
|
|
def apply_rope_comfy_chunked(xq, xk, freqs_cis, num_chunks=4):
|
|
seq_dim = 1
|
|
|
|
# Initialize output tensors
|
|
xq_out = torch.empty_like(xq)
|
|
xk_out = torch.empty_like(xk)
|
|
|
|
# Calculate chunks
|
|
seq_len = xq.shape[seq_dim]
|
|
chunk_sizes = [seq_len // num_chunks + (1 if i < seq_len % num_chunks else 0)
|
|
for i in range(num_chunks)]
|
|
|
|
# First pass: process xq completely
|
|
start_idx = 0
|
|
for size in chunk_sizes:
|
|
end_idx = start_idx + size
|
|
|
|
slices = [slice(None)] * len(xq.shape)
|
|
slices[seq_dim] = slice(start_idx, end_idx)
|
|
|
|
freq_slices = [slice(None)] * len(freqs_cis.shape)
|
|
if seq_dim < len(freqs_cis.shape):
|
|
freq_slices[seq_dim] = slice(start_idx, end_idx)
|
|
freqs_chunk = freqs_cis[tuple(freq_slices)]
|
|
|
|
xq_chunk = xq[tuple(slices)]
|
|
xq_chunk_ = xq_chunk.to(dtype=freqs_cis.dtype).reshape(*xq_chunk.shape[:-1], -1, 1, 2)
|
|
xq_out[tuple(slices)] = (freqs_chunk[..., 0] * xq_chunk_[..., 0] +
|
|
freqs_chunk[..., 1] * xq_chunk_[..., 1]).reshape(*xq_chunk.shape).type_as(xq)
|
|
|
|
del xq_chunk, xq_chunk_, freqs_chunk
|
|
start_idx = end_idx
|
|
|
|
# Second pass: process xk completely
|
|
start_idx = 0
|
|
for size in chunk_sizes:
|
|
end_idx = start_idx + size
|
|
|
|
slices = [slice(None)] * len(xk.shape)
|
|
slices[seq_dim] = slice(start_idx, end_idx)
|
|
|
|
freq_slices = [slice(None)] * len(freqs_cis.shape)
|
|
if seq_dim < len(freqs_cis.shape):
|
|
freq_slices[seq_dim] = slice(start_idx, end_idx)
|
|
freqs_chunk = freqs_cis[tuple(freq_slices)]
|
|
|
|
xk_chunk = xk[tuple(slices)]
|
|
xk_chunk_ = xk_chunk.to(dtype=freqs_cis.dtype).reshape(*xk_chunk.shape[:-1], -1, 1, 2)
|
|
xk_out[tuple(slices)] = (freqs_chunk[..., 0] * xk_chunk_[..., 0] +
|
|
freqs_chunk[..., 1] * xk_chunk_[..., 1]).reshape(*xk_chunk.shape).type_as(xk)
|
|
|
|
del xk_chunk, xk_chunk_, freqs_chunk
|
|
start_idx = end_idx
|
|
|
|
return xq_out, xk_out
|
|
|
|
def rope_riflex(pos, dim, i, theta, L_test, k, ntk_factor=1.0):
|
|
assert dim % 2 == 0
|
|
if mm.is_device_mps(pos.device) or mm.is_intel_xpu() or mm.is_directml_enabled():
|
|
device = torch.device("cpu")
|
|
else:
|
|
device = pos.device
|
|
|
|
if ntk_factor != 1.0:
|
|
theta *= ntk_factor
|
|
|
|
scale = torch.linspace(0, (dim - 2) / dim, steps=dim//2, dtype=torch.float64, device=device)
|
|
omega = 1.0 / (theta**scale)
|
|
|
|
# RIFLEX modification - adjust last frequency component if L_test and k are provided
|
|
if i==0 and k > 0 and L_test:
|
|
omega[k-1] = 0.9 * 2 * torch.pi / L_test
|
|
|
|
out = torch.einsum("...n,d->...nd", pos.to(dtype=torch.float32, device=device), omega)
|
|
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
|
|
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
|
|
return out.to(dtype=torch.float32, device=pos.device)
|
|
|
|
class EmbedND_RifleX(nn.Module):
|
|
def __init__(self, dim, theta, axes_dim, num_frames, k):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.theta = theta
|
|
self.axes_dim = axes_dim
|
|
self.num_frames = num_frames
|
|
self.k = k
|
|
|
|
def forward(self, ids, ntk_factor=[1.0,1.0,1.0]):
|
|
n_axes = ids.shape[-1]
|
|
emb = torch.cat(
|
|
[rope_riflex(
|
|
ids[..., i],
|
|
self.axes_dim[i],
|
|
i, #f h w
|
|
self.theta,
|
|
self.num_frames,
|
|
self.k,
|
|
ntk_factor[i])
|
|
for i in range(n_axes)],
|
|
dim=-3,
|
|
)
|
|
return emb.unsqueeze(1)
|
|
|
|
def poly1d(coefficients, x):
|
|
result = torch.zeros_like(x)
|
|
for i, coeff in enumerate(coefficients):
|
|
result += coeff * (x ** (len(coefficients) - 1 - i))
|
|
return result.abs()
|
|
|
|
def sinusoidal_embedding_1d(dim, position):
|
|
# preprocess
|
|
assert dim % 2 == 0
|
|
half = dim // 2
|
|
position = position.type(torch.float32)
|
|
|
|
# calculation
|
|
sinusoid = torch.outer(
|
|
position, torch.pow(10000, -torch.arange(half).to(position).div(half)))
|
|
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
|
|
return x
|
|
|
|
def rope_params(max_seq_len, dim, theta=10000, L_test=25, k=0, freqs_scaling=1.0):
|
|
assert dim % 2 == 0
|
|
exponents = torch.arange(0, dim, 2, dtype=torch.float64).div(dim)
|
|
inv_theta_pow = 1.0 / torch.pow(theta, exponents)
|
|
|
|
if k > 0:
|
|
print(f"RifleX: Using {k}th freq")
|
|
inv_theta_pow[k-1] = 0.9 * 2 * torch.pi / L_test
|
|
|
|
inv_theta_pow *= freqs_scaling
|
|
|
|
freqs = torch.outer(torch.arange(max_seq_len), inv_theta_pow)
|
|
freqs = torch.polar(torch.ones_like(freqs), freqs)
|
|
return freqs
|
|
|
|
@torch.autocast(device_type=mm.get_autocast_device(mm.get_torch_device()), enabled=False)
|
|
@torch.compiler.disable()
|
|
def rope_apply(x, grid_sizes, freqs, reverse_time=False):
|
|
x_ndim = grid_sizes.shape[-1]
|
|
if x_ndim == 3:
|
|
return rope_apply_3d(x, grid_sizes, freqs, reverse_time=reverse_time)
|
|
else:
|
|
return rope_apply_1d(x, grid_sizes, freqs)
|
|
|
|
def rope_apply_3d(x, grid_sizes, freqs, reverse_time=False):
|
|
n, c = x.size(2), x.size(3) // 2
|
|
|
|
# split freqs
|
|
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
|
|
|
|
# loop over samples
|
|
output = []
|
|
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
|
|
seq_len = f * h * w
|
|
|
|
# precompute multipliers
|
|
x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape(
|
|
seq_len, n, -1, 2))
|
|
if reverse_time:
|
|
time_freqs = freqs[0][:f].view(f, 1, 1, -1)
|
|
time_freqs = torch.flip(time_freqs, dims=[0])
|
|
time_freqs = time_freqs.expand(f, h, w, -1)
|
|
|
|
spatial_freqs = torch.cat([
|
|
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
|
|
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
|
|
], dim=-1)
|
|
|
|
freqs_i = torch.cat([time_freqs, spatial_freqs], dim=-1).reshape(seq_len, 1, -1)
|
|
else:
|
|
freqs_i = torch.cat([
|
|
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
|
|
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
|
|
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
|
|
],
|
|
dim=-1).reshape(seq_len, 1, -1)
|
|
|
|
# apply rotary embedding
|
|
x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
|
|
x_i = torch.cat([x_i, x[i, seq_len:]])
|
|
|
|
# append to collection
|
|
output.append(x_i)
|
|
return torch.stack(output).to(x.dtype)
|
|
|
|
|
|
def rope_apply_1d(x, grid_sizes, freqs):
|
|
n, c = x.size(2), x.size(3) // 2 ## b l h d
|
|
c_rope = freqs.shape[1] # number of complex dims to rotate
|
|
assert c_rope <= c, "RoPE dimensions cannot exceed half of hidden size"
|
|
|
|
# loop over samples
|
|
output = []
|
|
for i, (l, ) in enumerate(grid_sizes.tolist()):
|
|
seq_len = l
|
|
# precompute multipliers
|
|
x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape(
|
|
seq_len, n, -1, 2)) # [l n d//2]
|
|
x_i_rope = x_i[:, :, :c_rope] * freqs[:seq_len, None, :] # [L, N, c_rope]
|
|
x_i_passthrough = x_i[:, :, c_rope:] # untouched dims
|
|
x_i = torch.cat([x_i_rope, x_i_passthrough], dim=2)
|
|
|
|
# apply rotary embedding
|
|
x_i = torch.view_as_real(x_i).flatten(2)
|
|
x_i = torch.cat([x_i, x[i, seq_len:]])
|
|
|
|
# append to collection
|
|
output.append(x_i)
|
|
return torch.stack(output).to(x.dtype)
|
|
|
|
class WanRMSNorm(nn.Module):
|
|
|
|
def __init__(self, dim, eps=1e-5):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.eps = eps
|
|
self.weight = nn.Parameter(torch.ones(dim))
|
|
|
|
def forward(self, x, num_chunks=1):
|
|
r"""
|
|
Args:
|
|
x(Tensor): Shape [B, L, C]
|
|
"""
|
|
use_chunked = num_chunks > 1
|
|
if use_chunked:
|
|
return self.forward_chunked(x, num_chunks)
|
|
else:
|
|
return self._norm(x.to(self.weight.dtype)) * self.weight
|
|
|
|
def _norm(self, x):
|
|
return x * (torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)).to(x.dtype)
|
|
|
|
def forward_chunked(self, x, num_chunks=4):
|
|
output = torch.empty_like(x)
|
|
|
|
chunk_sizes = [x.shape[1] // num_chunks + (1 if i < x.shape[1] % num_chunks else 0)
|
|
for i in range(num_chunks)]
|
|
|
|
start_idx = 0
|
|
for size in chunk_sizes:
|
|
end_idx = start_idx + size
|
|
|
|
chunk = x[:, start_idx:end_idx, :]
|
|
|
|
norm_factor = torch.rsqrt(chunk.pow(2).mean(dim=-1, keepdim=True) + self.eps)
|
|
output[:, start_idx:end_idx, :] = chunk * norm_factor.to(chunk.dtype) * self.weight
|
|
|
|
start_idx = end_idx
|
|
|
|
return output
|
|
|
|
class WanFusedRMSNorm(nn.RMSNorm):
|
|
def forward(self, x, num_chunks=1):
|
|
use_chunked = num_chunks > 1
|
|
if use_chunked:
|
|
return self.forward_chunked(x, num_chunks)
|
|
else:
|
|
return super().forward(x)
|
|
|
|
def forward_chunked(self, x, num_chunks=4):
|
|
output = torch.empty_like(x)
|
|
|
|
chunk_sizes = [x.shape[1] // num_chunks + (1 if i < x.shape[1] % num_chunks else 0)
|
|
for i in range(num_chunks)]
|
|
|
|
start_idx = 0
|
|
for size in chunk_sizes:
|
|
end_idx = start_idx + size
|
|
chunk = x[:, start_idx:end_idx, :]
|
|
output[:, start_idx:end_idx, :] = super().forward(chunk)
|
|
start_idx = end_idx
|
|
|
|
return output
|
|
|
|
class WanLayerNorm(nn.LayerNorm):
|
|
|
|
def __init__(self, dim, eps=1e-6, elementwise_affine=False):
|
|
super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps)
|
|
|
|
def forward(self, x):
|
|
r"""
|
|
Args:
|
|
x(Tensor): Shape [B, L, C]
|
|
"""
|
|
return super().forward(x)
|
|
|
|
#region selfattn
|
|
class WanSelfAttention(nn.Module):
|
|
|
|
def __init__(self,
|
|
in_features,
|
|
out_features,
|
|
num_heads,
|
|
qk_norm=True,
|
|
eps=1e-6,
|
|
attention_mode="sdpa",
|
|
rms_norm_function="default",
|
|
kv_dim=None,
|
|
head_norm=False):
|
|
assert out_features % num_heads == 0
|
|
super().__init__()
|
|
self.dim = min(in_features, out_features)
|
|
self.num_heads = num_heads
|
|
self.head_dim = out_features // num_heads
|
|
self.qk_norm = qk_norm
|
|
self.eps = eps
|
|
self.attention_mode = attention_mode
|
|
|
|
#radial attention
|
|
self.mask_map = None
|
|
self.decay_factor = 0.2
|
|
self.cond_size = None
|
|
self.ref_adapter = None
|
|
|
|
# layers
|
|
self.q = nn.Linear(in_features, out_features)
|
|
if kv_dim is not None:
|
|
self.k = nn.Linear(kv_dim, out_features)
|
|
self.v = nn.Linear(kv_dim, out_features)
|
|
else:
|
|
self.k = nn.Linear(in_features, out_features)
|
|
self.v = nn.Linear(in_features, out_features)
|
|
self.o = nn.Linear(in_features, out_features)
|
|
|
|
norm_dim = self.head_dim if head_norm else self.dim
|
|
|
|
if rms_norm_function=="pytorch":
|
|
self.norm_q = WanFusedRMSNorm(norm_dim, eps=eps) if qk_norm else nn.Identity()
|
|
self.norm_k = WanFusedRMSNorm(norm_dim, eps=eps) if qk_norm else nn.Identity()
|
|
else:
|
|
self.norm_q = WanRMSNorm(norm_dim, eps=eps) if qk_norm else nn.Identity()
|
|
self.norm_k = WanRMSNorm(norm_dim, eps=eps) if qk_norm else nn.Identity()
|
|
|
|
def qkv_fn(self, x):
|
|
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
|
|
q = self.norm_q(self.q(x).to(self.norm_q.weight.dtype)).to(x.dtype).view(b, s, n, d)
|
|
k = self.norm_k(self.k(x).to(self.norm_k.weight.dtype)).to(x.dtype).view(b, s, n, d)
|
|
v = self.v(x).view(b, s, n, d)
|
|
return q, k, v
|
|
|
|
def qkv_fn_longcat(self, x):
|
|
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
|
|
q = self.q(x).view(b, s, n, d)
|
|
q = self.norm_q(q.float()).to(x.dtype)
|
|
k = self.k(x).view(b, s, n, d)
|
|
k = self.norm_k(k.float()).to(x.dtype)
|
|
v = self.v(x).view(b, s, n, d)
|
|
return q, k, v
|
|
|
|
def qkv_fn_ip(self, x):
|
|
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
|
|
q = self.norm_q(self.q(x) + self.q_loras(x).to(self.norm_q.weight.dtype)).to(x.dtype).view(b, s, n, d)
|
|
k = self.norm_k(self.k(x) + self.k_loras(x).to(self.norm_k.weight.dtype)).to(x.dtype).view(b, s, n, d)
|
|
v = (self.v(x) + self.v_loras(x)).view(b, s, n, d)
|
|
return q, k, v
|
|
|
|
def forward(self, q, k, v, seq_lens, lynx_ref_feature=None, lynx_ref_scale=1.0, attention_mode_override=None):
|
|
r"""
|
|
Args:
|
|
x(Tensor): Shape [B, L, num_heads, C / num_heads]
|
|
seq_lens(Tensor): Shape [B]
|
|
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
|
|
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
|
"""
|
|
attention_mode = self.attention_mode
|
|
if attention_mode_override is not None:
|
|
attention_mode = attention_mode_override
|
|
|
|
if self.ref_adapter is not None and lynx_ref_feature is not None:
|
|
ref_x = self.ref_adapter(self, q, lynx_ref_feature)
|
|
|
|
x = attention(q, k, v, k_lens=seq_lens, attention_mode=attention_mode)
|
|
|
|
if self.ref_adapter is not None and lynx_ref_feature is not None:
|
|
x = x.add(ref_x, alpha=lynx_ref_scale)
|
|
|
|
# output
|
|
return self.o(x.flatten(2))
|
|
|
|
def forward_ip(self, q, k, v, q_ip, k_ip, v_ip, seq_lens, attention_mode_override=None):
|
|
attention_mode = self.attention_mode
|
|
if attention_mode_override is not None:
|
|
attention_mode = attention_mode_override
|
|
|
|
# Concatenate main and IP keys/values for main attention
|
|
full_k = torch.cat([k, k_ip], dim=1)
|
|
full_v = torch.cat([v, v_ip], dim=1)
|
|
main_out = attention(q, full_k, full_v, k_lens=seq_lens, attention_mode=attention_mode)
|
|
|
|
cond_out = attention(q_ip, k_ip, v_ip, k_lens=seq_lens, attention_mode=attention_mode)
|
|
x = torch.cat([main_out, cond_out], dim=1)
|
|
|
|
return self.o(x.flatten(2))
|
|
|
|
|
|
def forward_radial(self, q, k, v, dense_step=False):
|
|
if dense_step:
|
|
x = RadialSpargeSageAttnDense(q, k, v, self.mask_map)
|
|
else:
|
|
x = RadialSpargeSageAttn(q, k, v, self.mask_map, decay_factor=self.decay_factor)
|
|
return self.o(x.flatten(2))
|
|
|
|
|
|
def forward_multitalk(self, q, k, v, seq_lens, grid_sizes, ref_target_masks):
|
|
x = attention(
|
|
q, k, v,
|
|
k_lens=seq_lens,
|
|
attention_mode=self.attention_mode
|
|
)
|
|
|
|
# output
|
|
x = x.flatten(2)
|
|
x = self.o(x)
|
|
|
|
x_ref_attn_map = get_attn_map_with_target(q.type_as(x), k.type_as(x), grid_sizes[0], ref_target_masks=ref_target_masks)
|
|
|
|
return x, x_ref_attn_map
|
|
|
|
|
|
def forward_split(self, q, k, v, seq_lens, grid_sizes, seq_chunks):
|
|
r"""
|
|
Args:
|
|
x(Tensor): Shape [B, L, num_heads, C / num_heads]
|
|
seq_lens(Tensor): Shape [B]
|
|
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
|
|
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
|
"""
|
|
|
|
# Split by frames if multiple prompts are provided
|
|
frames, height, width = grid_sizes[0]
|
|
tokens_per_frame = height * width
|
|
|
|
seq_chunks_tensor = torch.tensor(seq_chunks, device=q.device, dtype=frames.dtype)
|
|
actual_chunks = torch.minimum(seq_chunks_tensor, frames)
|
|
base_frames_per_chunk = frames // actual_chunks
|
|
extra_frames = frames % actual_chunks
|
|
|
|
chunk_indices = torch.arange(actual_chunks, device=q.device)
|
|
chunk_sizes = base_frames_per_chunk + (chunk_indices < extra_frames)
|
|
chunk_starts = torch.cumsum(torch.cat([torch.zeros(1, device=q.device, dtype=torch.long), chunk_sizes[:-1]]), dim=0)
|
|
chunk_ends = chunk_starts + chunk_sizes
|
|
|
|
outputs = []
|
|
for i in chunk_indices:
|
|
start_idx = chunk_starts[i] * tokens_per_frame
|
|
end_idx = chunk_ends[i] * tokens_per_frame
|
|
|
|
chunk_out = attention(
|
|
q[:, start_idx:end_idx, :, :],
|
|
k[:, start_idx:end_idx, :, :],
|
|
v[:, start_idx:end_idx, :, :],
|
|
k_lens=seq_lens,
|
|
attention_mode=self.attention_mode
|
|
)
|
|
outputs.append(chunk_out)
|
|
x = torch.cat(outputs, dim=1)
|
|
|
|
# output
|
|
return self.o(x.flatten(2))
|
|
|
|
def normalized_attention_guidance(self, b, n, d, q, context, nag_context=None, nag_params={}):
|
|
# NAG text attention
|
|
context_positive = context
|
|
context_negative = nag_context
|
|
nag_scale = nag_params['nag_scale']
|
|
nag_alpha = nag_params['nag_alpha']
|
|
nag_tau = nag_params['nag_tau']
|
|
|
|
k_positive = self.norm_k(self.k(context_positive).to(self.norm_k.weight.dtype)).view(b, -1, n, d).to(q.dtype)
|
|
v_positive = self.v(context_positive).view(b, -1, n, d)
|
|
k_negative = self.norm_k(self.k(context_negative).to(self.norm_k.weight.dtype)).view(b, -1, n, d).to(q.dtype)
|
|
v_negative = self.v(context_negative).view(b, -1, n, d)
|
|
|
|
x_positive = attention(q, k_positive, v_positive, attention_mode=self.attention_mode)
|
|
x_positive = x_positive.flatten(2)
|
|
|
|
x_negative = attention(q, k_negative, v_negative, attention_mode=self.attention_mode)
|
|
x_negative = x_negative.flatten(2)
|
|
|
|
nag_guidance = x_positive * nag_scale - x_negative * (nag_scale - 1)
|
|
|
|
norm_positive = torch.norm(x_positive, p=1, dim=-1, keepdim=True)
|
|
norm_guidance = torch.norm(nag_guidance, p=1, dim=-1, keepdim=True)
|
|
|
|
scale = norm_guidance / norm_positive
|
|
scale = torch.nan_to_num(scale, nan=10.0)
|
|
|
|
mask = scale > nag_tau
|
|
adjustment = (norm_positive * nag_tau) / (norm_guidance + 1e-7)
|
|
nag_guidance = torch.where(mask, nag_guidance * adjustment, nag_guidance)
|
|
del mask, adjustment
|
|
|
|
return nag_guidance * nag_alpha + x_positive * (1 - nag_alpha)
|
|
|
|
class LoRALinearLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_features: int,
|
|
out_features: int,
|
|
rank: int = 128,
|
|
device=torch.device("cuda"),
|
|
dtype=torch.float32,
|
|
strength: float = 1.0
|
|
):
|
|
super().__init__()
|
|
self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
|
|
self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
|
|
self.rank = rank
|
|
self.out_features = out_features
|
|
self.in_features = in_features
|
|
self.strength = strength
|
|
|
|
nn.init.normal_(self.down.weight, std=1 / rank)
|
|
nn.init.zeros_(self.up.weight)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
orig_dtype = hidden_states.dtype
|
|
dtype = self.down.weight.dtype
|
|
|
|
down_hidden_states = self.down(hidden_states.to(dtype))
|
|
up_hidden_states = self.up(down_hidden_states) * self.strength
|
|
return up_hidden_states.to(orig_dtype)
|
|
|
|
#region crossattn
|
|
class WanT2VCrossAttention(WanSelfAttention):
|
|
|
|
def __init__(self, in_features, out_features, num_heads, kv_dim=None, qk_norm=True, eps=1e-6, attention_mode='sdpa', rms_norm_function="default", head_norm=False):
|
|
super().__init__(in_features, out_features, num_heads, qk_norm, eps, kv_dim=kv_dim, rms_norm_function=rms_norm_function, head_norm=head_norm)
|
|
self.attention_mode = attention_mode
|
|
self.ip_adapter = None
|
|
self.k_fusion = None
|
|
|
|
def forward(self, x, context, grid_sizes=None, clip_embed=None, audio_proj=None, audio_scale=1.0,
|
|
num_latent_frames=21, nag_params={}, nag_context=None, is_uncond=False, rope_func="comfy",
|
|
inner_t=None, inner_c=None, cross_freqs=None,
|
|
adapter_proj=None, adapter_attn_mask=None, ip_scale=1.0, orig_seq_len=None, lynx_x_ip=None, lynx_ip_scale=1.0, num_cond_latents=None, **kwargs):
|
|
b, n, d = x.size(0), self.num_heads, self.head_dim
|
|
s = x.size(1)
|
|
# compute query
|
|
is_longcat = x.shape[-1] == 4096
|
|
|
|
if is_longcat:
|
|
if num_cond_latents is not None and num_cond_latents > 0:
|
|
num_cond_latents_thw = num_cond_latents * (s // num_latent_frames)
|
|
x = x[:, num_cond_latents_thw:]
|
|
q = self.norm_q(self.q(x).view(b, -1, n, d))
|
|
else:
|
|
q = self.norm_q(self.q(x).to(self.norm_q.weight.dtype),num_chunks=2 if rope_func == "comfy_chunked" else 1).to(x.dtype).view(b, -1, n, d)
|
|
|
|
if nag_context is not None and not is_uncond:
|
|
x = self.normalized_attention_guidance(b, n, d, q, context, nag_context, nag_params)
|
|
else:
|
|
if is_longcat:
|
|
k = self.norm_k(self.k(context).to(self.norm_k.weight.dtype).view(b, -1, n, d)).to(x.dtype)
|
|
else:
|
|
k = self.norm_k(self.k(context).to(self.norm_k.weight.dtype)).to(x.dtype).view(b, -1, n, d)
|
|
|
|
v = self.v(context).view(b, -1, n, d)
|
|
|
|
#EchoShot rope
|
|
if inner_t is not None and cross_freqs is not None and not is_uncond:
|
|
q = rope_apply_z(q, grid_sizes, cross_freqs, inner_t).to(q)
|
|
k = rope_apply_c(k, cross_freqs, inner_c).to(q)
|
|
|
|
x = attention(q, k, v, attention_mode=self.attention_mode).flatten(2)
|
|
|
|
if lynx_x_ip is not None and self.ip_adapter is not None and ip_scale !=0:
|
|
lynx_x_ip = self.ip_adapter(self, q, lynx_x_ip)
|
|
x = x.add(lynx_x_ip, alpha=lynx_ip_scale)
|
|
|
|
# FantasyTalking audio attention
|
|
if audio_proj is not None:
|
|
if len(audio_proj.shape) == 4:
|
|
audio_q = q.view(b * num_latent_frames, -1, n, d)
|
|
ip_key = self.k_proj(audio_proj).view(b * num_latent_frames, -1, n, d)
|
|
ip_value = self.v_proj(audio_proj).view(b * num_latent_frames, -1, n, d)
|
|
audio_x = attention(audio_q, ip_key, ip_value, attention_mode=self.attention_mode)
|
|
audio_x = audio_x.view(b, q.size(1), n, d).flatten(2)
|
|
elif len(audio_proj.shape) == 3:
|
|
ip_key = self.k_proj(audio_proj).view(b, -1, n, d)
|
|
ip_value = self.v_proj(audio_proj).view(b, -1, n, d)
|
|
audio_x = attention(q, ip_key, ip_value, attention_mode=self.attention_mode).flatten(2)
|
|
x = x + audio_x * audio_scale
|
|
|
|
# FantasyPortrait adapter attention
|
|
if adapter_proj is not None:
|
|
if len(adapter_proj.shape) == 4:
|
|
q_in = q[:, :orig_seq_len]
|
|
adapter_q = q_in.view(b * num_latent_frames, -1, n, d)
|
|
ip_key = self.ip_adapter_single_stream_k_proj(adapter_proj).view(b * num_latent_frames, -1, n, d)
|
|
ip_value = self.ip_adapter_single_stream_v_proj(adapter_proj).view(b * num_latent_frames, -1, n, d)
|
|
|
|
adapter_x = attention(adapter_q, ip_key, ip_value, attention_mode=self.attention_mode)
|
|
adapter_x = adapter_x.view(b, q_in.size(1), n, d)
|
|
adapter_x = adapter_x.flatten(2)
|
|
elif len(adapter_proj.shape) == 3:
|
|
ip_key = self.ip_adapter_single_stream_k_proj(adapter_proj).view(b, -1, n, d)
|
|
ip_value = self.ip_adapter_single_stream_v_proj(adapter_proj).view(b, -1, n, d)
|
|
adapter_x = attention(q_in, ip_key, ip_value, attention_mode=self.attention_mode)
|
|
adapter_x = adapter_x.flatten(2)
|
|
x[:, :orig_seq_len] = x[:, :orig_seq_len] + adapter_x * ip_scale
|
|
|
|
if self.k_fusion is not None:
|
|
# compute target attention
|
|
target_seq = self.pre_attn_norm_fusion(kwargs["target_seq"])
|
|
k_target = self.norm_k_fusion(self.k_fusion(target_seq)).view(b, -1, n, d)
|
|
v_target = self.v_fusion(target_seq).view(b, -1, n, d)
|
|
|
|
q = rope_apply(q, grid_sizes, kwargs["src_freqs"])
|
|
k_target = rope_apply(k_target, kwargs["target_grid_sizes"], kwargs["target_freqs"])
|
|
target_x = attention(q, k_target, v_target, k_lens=kwargs["target_seq_lens"]).flatten(2)
|
|
|
|
x = x.add(target_x)
|
|
|
|
if is_longcat and num_cond_latents is not None and num_cond_latents > 0:
|
|
return torch.cat([torch.zeros((b, num_cond_latents_thw, x.shape[-1]), dtype=x.dtype, device=x.device), self.o(x)], dim=1).contiguous()
|
|
|
|
return self.o(x)
|
|
|
|
class WanI2VCrossAttention(WanSelfAttention):
|
|
|
|
def __init__(self, in_features, out_features, num_heads, qk_norm=True, eps=1e-6, attention_mode='sdpa', rms_norm_function="default", **kwargs):
|
|
super().__init__(in_features, out_features, num_heads, qk_norm, eps, rms_norm_function=rms_norm_function)
|
|
self.k_img = nn.Linear(in_features, out_features)
|
|
self.v_img = nn.Linear(in_features, out_features)
|
|
self.norm_k_img = WanRMSNorm(out_features, eps=eps) if qk_norm else nn.Identity()
|
|
self.attention_mode = attention_mode
|
|
|
|
def forward(self, x, context, grid_sizes=None, clip_embed=None, audio_proj=None,
|
|
audio_scale=1.0, num_latent_frames=21, nag_params={}, nag_context=None, is_uncond=False, rope_func="comfy",
|
|
adapter_proj=None, adapter_attn_mask=None, ip_scale=1.0, orig_seq_len=None, **kwargs):
|
|
r"""
|
|
Args:
|
|
x(Tensor): Shape [B, L1, C]
|
|
context(Tensor): Shape [B, L2, C]
|
|
"""
|
|
b, n, d = x.size(0), self.num_heads, self.head_dim
|
|
# compute query
|
|
q = self.norm_q(self.q(x).to(self.norm_q.weight.dtype),num_chunks=2 if rope_func == "comfy_chunked" else 1).view(b, -1, n, d).to(x.dtype)
|
|
|
|
if nag_context is not None and not is_uncond:
|
|
x_text = self.normalized_attention_guidance(b, n, d, q, context, nag_context, nag_params)
|
|
else:
|
|
# text attention
|
|
k = self.norm_k(self.k(context).to(self.norm_k.weight.dtype)).view(b, -1, n, d).to(x.dtype)
|
|
v = self.v(context).view(b, -1, n, d)
|
|
x_text = attention(q, k, v, attention_mode=self.attention_mode).flatten(2)
|
|
|
|
#img attention
|
|
if clip_embed is not None:
|
|
k_img = self.norm_k_img(self.k_img(clip_embed).to(self.norm_k_img.weight.dtype)).view(b, -1, n, d).to(x.dtype)
|
|
v_img = self.v_img(clip_embed).view(b, -1, n, d)
|
|
img_x = attention(q, k_img, v_img, attention_mode=self.attention_mode).flatten(2)
|
|
x = x_text + img_x
|
|
else:
|
|
x = x_text
|
|
|
|
# FantasyTalking audio attention
|
|
if audio_proj is not None:
|
|
if len(audio_proj.shape) == 4:
|
|
audio_q = q.view(b * num_latent_frames, -1, n, d)
|
|
ip_key = self.k_proj(audio_proj).view(b * num_latent_frames, -1, n, d)
|
|
ip_value = self.v_proj(audio_proj).view(b * num_latent_frames, -1, n, d)
|
|
|
|
audio_x = attention(audio_q, ip_key, ip_value, attention_mode=self.attention_mode)
|
|
audio_x = audio_x.view(b, q.size(1), n, d).flatten(2)
|
|
elif len(audio_proj.shape) == 3:
|
|
ip_key = self.k_proj(audio_proj).view(b, -1, n, d)
|
|
ip_value = self.v_proj(audio_proj).view(b, -1, n, d)
|
|
audio_x = attention(q, ip_key, ip_value, attention_mode=self.attention_mode).flatten(2)
|
|
x = x + audio_x * audio_scale
|
|
|
|
# FantasyPortrait adapter attention
|
|
if adapter_proj is not None:
|
|
if len(adapter_proj.shape) == 4:
|
|
adapter_q = q.view(b * num_latent_frames, -1, n, d)
|
|
ip_key = self.ip_adapter_single_stream_k_proj(adapter_proj).view(b * num_latent_frames, -1, n, d)
|
|
ip_value = self.ip_adapter_single_stream_v_proj(adapter_proj).view(b * num_latent_frames, -1, n, d)
|
|
|
|
adapter_x = attention(adapter_q, ip_key, ip_value, attention_mode=self.attention_mode)
|
|
adapter_x = adapter_x.view(b, q.size(1), n, d)
|
|
adapter_x = adapter_x.flatten(2)
|
|
elif len(adapter_proj.shape) == 3:
|
|
ip_key = self.ip_adapter_single_stream_k_proj(adapter_proj).view(b, -1, n, d)
|
|
ip_value = self.ip_adapter_single_stream_v_proj(adapter_proj).view(b, -1, n, d)
|
|
adapter_x = attention(q, ip_key, ip_value, attention_mode=self.attention_mode)
|
|
adapter_x = adapter_x.flatten(2)
|
|
x = x + adapter_x * ip_scale
|
|
|
|
return self.o(x)
|
|
|
|
class WanHuMoCrossAttention(WanSelfAttention):
|
|
|
|
def __init__(self, in_features, out_features, num_heads, kv_dim=None, qk_norm=True, eps=1e-6, attention_mode='sdpa', rms_norm_function="default"):
|
|
super().__init__(in_features, out_features, num_heads, qk_norm, eps, kv_dim=kv_dim, rms_norm_function=rms_norm_function)
|
|
self.attention_mode = attention_mode
|
|
|
|
def forward(self, x, context, grid_sizes, **kwargs):
|
|
|
|
b, n, d = x.size(0), self.num_heads, self.head_dim
|
|
q = self.norm_q(self.q(x)).view(b, -1, n, d)
|
|
k = self.norm_k(self.k(context)).view(b, -1, n, d)
|
|
v = self.v(context).view(b, -1, n, d)
|
|
|
|
# Handle video spatial structure
|
|
hlen_wlen = grid_sizes[0][1] * grid_sizes[0][2]
|
|
q = q.reshape(-1, hlen_wlen, n, d)
|
|
|
|
# Handle audio temporal structure (16 tokens per frame)
|
|
k = k.reshape(-1, 16, n, d)
|
|
v = v.reshape(-1, 16, n, d)
|
|
|
|
x_text = attention(q, k, v, attention_mode=self.attention_mode)
|
|
x_text = x_text.view(b, -1, n, d).flatten(2)
|
|
|
|
x = x_text
|
|
|
|
return self.o(x)
|
|
|
|
class AudioCrossAttentionWrapper(nn.Module):
|
|
def __init__(self, in_features, out_features, num_heads, qk_norm=True, eps=1e-6, kv_dim=None):
|
|
super().__init__()
|
|
|
|
self.audio_cross_attn = WanHuMoCrossAttention(in_features, out_features, num_heads, kv_dim=kv_dim)
|
|
self.norm1_audio = WanLayerNorm(out_features, eps, elementwise_affine=True)
|
|
|
|
def forward(self, x, audio, grid_sizes, humo_audio_scale=1.0):
|
|
x = x + self.audio_cross_attn(self.norm1_audio(x), audio, grid_sizes) * humo_audio_scale
|
|
return x
|
|
|
|
class MTVCrafterMotionAttention(WanSelfAttention):
|
|
|
|
def forward(self, x, mo, pe, grid_sizes, freqs):
|
|
r"""
|
|
Args:
|
|
x(Tensor): Shape [B, L1, C]
|
|
mo: Motion tokens
|
|
pe: 4D RoPE
|
|
"""
|
|
b, n, d = x.size(0), self.num_heads, self.head_dim
|
|
|
|
# compute query, key, value
|
|
q = self.norm_q(self.q(x)).view(b, -1, n, d)
|
|
k = self.norm_k(self.k(mo)).view(b, n, -1, d)
|
|
v = self.v(mo).view(b, -1, n, d)
|
|
|
|
# compute attention
|
|
x = attention(
|
|
q=rope_apply(q, grid_sizes, freqs),
|
|
k=apply_rotary_emb(k, pe).transpose(1, 2),
|
|
v=v
|
|
)
|
|
|
|
return self.o(x.flatten(2))
|
|
|
|
|
|
WAN_CROSSATTENTION_CLASSES = {
|
|
't2v_cross_attn': WanT2VCrossAttention,
|
|
'i2v_cross_attn': WanI2VCrossAttention,
|
|
}
|
|
|
|
|
|
class WanAttentionBlock(nn.Module):
|
|
|
|
def __init__(self,
|
|
cross_attn_type, in_features, out_features, ffn_dim, ffn2_dim, num_heads,
|
|
qk_norm=True, cross_attn_norm=False, eps=1e-6, attention_mode="sdpa", rope_func="comfy", rms_norm_function="default",
|
|
use_motion_attn=False, use_humo_audio_attn=False, face_fuser_block=False, lynx_ip_layers=None, lynx_ref_layers=None,
|
|
block_idx=0, is_longcat=False):
|
|
super().__init__()
|
|
self.dim = out_features
|
|
self.ffn_dim = ffn_dim
|
|
self.num_heads = num_heads
|
|
self.head_dim = out_features // num_heads
|
|
self.qk_norm = qk_norm
|
|
self.cross_attn_norm = cross_attn_norm
|
|
self.eps = eps
|
|
self.attention_mode = attention_mode
|
|
self.rope_func = rope_func
|
|
#radial attn
|
|
self.dense_timesteps = 10
|
|
self.dense_block = False
|
|
self.dense_attention_mode = "sageattn"
|
|
self.block_idx = block_idx
|
|
|
|
self.kv_cache = None
|
|
self.use_motion_attn = use_motion_attn
|
|
self.has_face_fuser_block = face_fuser_block
|
|
|
|
# layers
|
|
self.norm1 = WanLayerNorm(self.dim, eps)
|
|
self.self_attn = WanSelfAttention(in_features, out_features, num_heads, qk_norm, eps, self.attention_mode, rms_norm_function=rms_norm_function,
|
|
head_norm=is_longcat)
|
|
|
|
# MTV Crafter motion attn
|
|
if self.use_motion_attn:
|
|
self.norm4 = WanLayerNorm(out_features, eps, elementwise_affine=True) if cross_attn_norm else nn.Identity()
|
|
self.motion_attn = MTVCrafterMotionAttention(in_features, out_features, num_heads, qk_norm, eps, self.attention_mode)
|
|
|
|
if cross_attn_type != "no_cross_attn":
|
|
self.norm3 = WanLayerNorm(out_features, eps, elementwise_affine=True) if cross_attn_norm else nn.Identity()
|
|
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](in_features, out_features, num_heads, qk_norm, eps, rms_norm_function=rms_norm_function,
|
|
head_norm=is_longcat)
|
|
self.norm2 = WanLayerNorm(self.dim, eps)
|
|
|
|
if not is_longcat:
|
|
self.ffn = nn.Sequential(
|
|
nn.Linear(in_features, ffn_dim), nn.GELU(approximate='tanh'),
|
|
nn.Linear(ffn2_dim, out_features))
|
|
else:
|
|
from ...LongCat.layers import FeedForwardSwiGLU
|
|
mlp_ratio = 4
|
|
self.ffn = FeedForwardSwiGLU(dim=self.dim, hidden_dim=int(self.dim * mlp_ratio))
|
|
|
|
# modulation
|
|
if not is_longcat:
|
|
self.modulation = nn.Parameter(torch.randn(1, 6, out_features) / in_features**0.5)
|
|
else:
|
|
adaln_tembed_dim = 512
|
|
self.modulation = nn.Sequential(nn.SiLU(), nn.Linear(adaln_tembed_dim, 6 * self.dim, bias=True))
|
|
|
|
self.seg_idx = None
|
|
|
|
# HuMo audio cross-attn
|
|
if use_humo_audio_attn:
|
|
self.audio_cross_attn_wrapper = AudioCrossAttentionWrapper(in_features, out_features, num_heads, qk_norm, eps, kv_dim=1536)
|
|
|
|
if face_fuser_block:
|
|
from .wananimate.face_blocks import FaceBlock
|
|
self.fuser_block = FaceBlock(self.dim, num_heads)
|
|
|
|
# Lynx
|
|
self.ref_adapter = None
|
|
if lynx_ref_layers == "full":
|
|
from ...lynx.modules import WanLynxRefAttention
|
|
self.self_attn.ref_adapter = WanLynxRefAttention(dim=self.dim)
|
|
if lynx_ip_layers == "full":
|
|
from ...lynx.modules import WanLynxIPCrossAttention
|
|
self.cross_attn.ip_adapter = WanLynxIPCrossAttention(cross_attention_dim=self.dim, dim=self.dim, n_registers=16)
|
|
elif lynx_ip_layers == "lite":
|
|
from ...lynx.modules import WanLynxIPCrossAttention
|
|
if self.block_idx % 2 == 0:
|
|
self.cross_attn.ip_adapter = WanLynxIPCrossAttention(cross_attention_dim=2048, dim=self.dim, n_registers=0, bias=False)
|
|
|
|
def get_mod(self, e, modulation):
|
|
if e.dim() == 3:
|
|
if e.shape[-1] == 512:
|
|
e = self.modulation(e)
|
|
return e.unsqueeze(2).chunk(6, dim=-1)
|
|
return (modulation + e).chunk(6, dim=1) # 1, 6, dim
|
|
elif e.dim() == 4:
|
|
e_mod = modulation.unsqueeze(2) + e
|
|
return [ei.squeeze(1) for ei in e_mod.unbind(dim=1)]
|
|
|
|
|
|
def modulate(self, norm_x, shift_msa, scale_msa, seg_idx=None):
|
|
"""
|
|
Modulate x with shift and scale. If seg_idx is provided, apply segmented modulation.
|
|
"""
|
|
if seg_idx is not None:
|
|
parts = []
|
|
for i in range(2):
|
|
part = torch.addcmul(
|
|
shift_msa[:, i:i + 1],
|
|
norm_x[:, seg_idx[i]:seg_idx[i + 1]],
|
|
1 + scale_msa[:, i:i + 1]
|
|
)
|
|
parts.append(part)
|
|
norm_x = torch.cat(parts, dim=1)
|
|
return norm_x
|
|
else:
|
|
return torch.addcmul(shift_msa, norm_x, 1 + scale_msa)
|
|
|
|
def ffn_chunked(self, x, shift_mlp, scale_mlp, num_chunks=4):
|
|
modulated_input = torch.addcmul(shift_mlp, self.norm2(x.to(shift_mlp.dtype)), 1 + scale_mlp).to(x.dtype)
|
|
|
|
result = torch.empty_like(x)
|
|
seq_len = modulated_input.shape[1]
|
|
|
|
chunk_sizes = [seq_len // num_chunks + (1 if i < seq_len % num_chunks else 0)
|
|
for i in range(num_chunks)]
|
|
|
|
start_idx = 0
|
|
for size in chunk_sizes:
|
|
end_idx = start_idx + size
|
|
chunk = modulated_input[:, start_idx:end_idx, :]
|
|
result[:, start_idx:end_idx, :] = self.ffn(chunk)
|
|
start_idx = end_idx
|
|
|
|
return result
|
|
|
|
#region attention forward
|
|
def forward(
|
|
self, x, e, seq_lens, grid_sizes, freqs, context, current_step,
|
|
last_step=False,
|
|
clip_embed=None,
|
|
seq_chunks=0, #comfy chunked cross-attn
|
|
chunked_self_attention=False,
|
|
camera_embed=None, #ReCamMaster
|
|
audio_proj=None, audio_scale=1.0, #fantasytalking
|
|
num_latent_frames=21,
|
|
original_seq_len=None,
|
|
enhance_enabled=False, #feta
|
|
nag_params={}, nag_context=None, #normalized attention guidance
|
|
is_uncond=False,
|
|
multitalk_audio_embedding=None, ref_target_masks=None, human_num=0, #multitalk
|
|
inner_t=None, inner_c=None, cross_freqs=None, #echoshot
|
|
x_ip=None, e_ip=None, freqs_ip=None, ip_scale=1.0, #stand-in
|
|
adapter_proj=None, #fantasyportrait
|
|
reverse_time=False,
|
|
zero_timestep=False, #s2v zero timestep
|
|
mtv_motion_tokens=None, mtv_motion_rotary_emb=None, mtv_strength=1.0, mtv_freqs=None, #mtv crafter
|
|
humo_audio_input=None, humo_audio_scale=1.0, #humo audio
|
|
lynx_x_ip=None, lynx_ref_feature=None, lynx_ip_scale=1.0, lynx_ref_scale=1.0, #lynx
|
|
x_ovi=None, e_ovi=None, freqs_ovi=None, context_ovi=None, seq_lens_ovi=None, grid_sizes_ovi=None,
|
|
num_cond_latents=None, #longcat image cond amount
|
|
):
|
|
r"""
|
|
Args:
|
|
x(Tensor): Shape [B, L, C]
|
|
e(Tensor): Shape [B, 6, C]
|
|
seq_lens(Tensor): Shape [B], length of each sequence in batch
|
|
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
|
|
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
|
"""
|
|
zero_timestep = len(e) == 2
|
|
if zero_timestep: #s2v zero timestep
|
|
self.seg_idx = e[1]
|
|
self.seg_idx = min(max(0, self.seg_idx), x.size(1))
|
|
self.seg_idx = [0, self.seg_idx, x.size(1)]
|
|
e = e[0]
|
|
|
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.get_mod(e.to(x.device), self.modulation)
|
|
del e
|
|
input_dtype = x.dtype
|
|
B, N, C = x.shape
|
|
T = num_latent_frames
|
|
is_longcat = C == 4096
|
|
if is_longcat:
|
|
input_x = self.modulate(self.norm1(x.view(B, T, -1, C).to(shift_msa.dtype)), shift_msa, scale_msa, seg_idx=self.seg_idx).to(input_dtype).view(B, N, C)
|
|
else:
|
|
input_x = self.modulate(self.norm1(x.to(shift_msa.dtype)), shift_msa, scale_msa, seg_idx=self.seg_idx).to(input_dtype)
|
|
|
|
del shift_msa, scale_msa
|
|
|
|
if x_ip is not None:
|
|
shift_msa_ip, scale_msa_ip, gate_msa_ip, shift_mlp_ip, scale_mlp_ip, gate_mlp_ip = self.get_mod(e_ip.to(x.device), self.modulation)
|
|
input_x_ip = self.modulate(self.norm1(x_ip), shift_msa_ip, scale_msa_ip)
|
|
self.cond_size = input_x_ip.shape[1]
|
|
input_x = torch.concat([input_x, input_x_ip], dim=1)
|
|
self.kv_cache = None
|
|
|
|
if x_ovi is not None:
|
|
shift_msa_ovi, scale_msa_ovi, gate_msa_ovi, shift_mlp_ovi, scale_mlp_ovi, gate_mlp_ovi = self.get_mod(e_ovi.to(x.device), self.audio_block.modulation)
|
|
input_x_ovi = self.modulate(self.audio_block.norm1(x_ovi), shift_msa_ovi, scale_msa_ovi)
|
|
|
|
if camera_embed is not None:
|
|
# encode ReCamMaster camera
|
|
camera_embed = self.cam_encoder(camera_embed.to(x))
|
|
camera_embed = camera_embed.repeat(1, 2, 1)
|
|
camera_embed = camera_embed.unsqueeze(2).unsqueeze(3).repeat(1, 1, grid_sizes[0][1], grid_sizes[0][2], 1)
|
|
camera_embed = rearrange(camera_embed, 'b f h w d -> b (f h w) d')
|
|
input_x += camera_embed
|
|
|
|
# self-attention
|
|
x_ref_attn_map = None
|
|
|
|
# self-attention variables
|
|
q_ip = k_ip = v_ip = None
|
|
|
|
#RoPE and QKV computation
|
|
if inner_t is not None:
|
|
#query, key, value
|
|
q, k, v = self.self_attn.qkv_fn(input_x)
|
|
q=rope_apply_echoshot(q, grid_sizes, freqs, inner_t).to(q)
|
|
k=rope_apply_echoshot(k, grid_sizes, freqs, inner_t).to(k)
|
|
elif x_ip is not None and self.kv_cache is None:
|
|
# First pass - separate main and IP components
|
|
x_main, x_ip_input = input_x[:, : -self.cond_size], input_x[:, -self.cond_size :]
|
|
# Compute QKV for main content
|
|
q, k, v = self.self_attn.qkv_fn(x_main)
|
|
if self.rope_func == "comfy":
|
|
q, k = apply_rope_comfy(q, k, freqs)
|
|
elif self.rope_func == "comfy_chunked":
|
|
q, k = apply_rope_comfy_chunked(q, k, freqs)
|
|
# Compute QKV for IP content
|
|
q_ip, k_ip, v_ip = self.self_attn.qkv_fn_ip(x_ip_input)
|
|
if self.rope_func == "comfy":
|
|
q_ip, k_ip = apply_rope_comfy(q_ip, k_ip, freqs_ip)
|
|
elif self.rope_func == "comfy_chunked":
|
|
q_ip, k_ip = apply_rope_comfy_chunked(q_ip, k_ip, freqs_ip)
|
|
else:
|
|
if is_longcat:
|
|
q, k, v = self.self_attn.qkv_fn_longcat(input_x)
|
|
else:
|
|
q, k, v = self.self_attn.qkv_fn(input_x)
|
|
if self.rope_func == "comfy":
|
|
q, k = apply_rope_comfy(q, k, freqs)
|
|
elif self.rope_func == "comfy_chunked":
|
|
q, k = apply_rope_comfy_chunked(q, k, freqs)
|
|
elif self.rope_func == "mocha":
|
|
from ...mocha.nodes import rope_apply_mocha
|
|
q=rope_apply_mocha(q, grid_sizes, freqs)
|
|
k=rope_apply_mocha(k, grid_sizes, freqs)
|
|
else:
|
|
q = rope_apply(q, grid_sizes, freqs, reverse_time=reverse_time)
|
|
k = rope_apply(k, grid_sizes, freqs, reverse_time=reverse_time)
|
|
|
|
if x_ovi is not None:
|
|
q_ovi, k_ovi, v_ovi = self.audio_block.self_attn.qkv_fn(input_x_ovi)
|
|
q_ovi = rope_apply(q_ovi, grid_sizes_ovi, freqs_ovi)
|
|
k_ovi = rope_apply(k_ovi, grid_sizes_ovi, freqs_ovi)
|
|
y_ovi = self.audio_block.self_attn.forward(q_ovi, k_ovi, v_ovi, seq_lens_ovi)
|
|
x_ovi = x_ovi.addcmul(y_ovi, gate_msa_ovi)
|
|
|
|
|
|
# FETA
|
|
if enhance_enabled:
|
|
feta_scores = get_feta_scores(q, k)
|
|
|
|
#self-attention
|
|
split_attn = (context is not None
|
|
and (context.shape[0] > 1 or (clip_embed is not None and clip_embed.shape[0] > 1))
|
|
and x.shape[0] == 1
|
|
and inner_t is None
|
|
and x_ip is None # Don't split when using IP-Adapter
|
|
)
|
|
if split_attn and chunked_self_attention:
|
|
y = self.self_attn.forward_split(q, k, v, seq_lens, grid_sizes, seq_chunks)
|
|
elif ref_target_masks is not None: #multi/infinite talk
|
|
y, x_ref_attn_map = self.self_attn.forward_multitalk(q, k, v, seq_lens, grid_sizes, ref_target_masks)
|
|
elif self.attention_mode == "radial_sage_attention":
|
|
if self.dense_block or self.dense_timesteps is not None and current_step < self.dense_timesteps:
|
|
if self.dense_attention_mode == "sparse_sage_attn":
|
|
y = self.self_attn.forward_radial(q, k, v, dense_step=True)
|
|
else:
|
|
y = self.self_attn.forward(q, k, v, seq_lens)
|
|
else:
|
|
y = self.self_attn.forward_radial(q, k, v, dense_step=False)
|
|
elif self.attention_mode == "sageattn_3":
|
|
if current_step != 0 and not last_step:
|
|
y = self.self_attn.forward(q, k, v, seq_lens, attention_mode_override="sageattn_3")
|
|
else:
|
|
y = self.self_attn.forward(q, k, v, seq_lens, attention_mode_override="sageattn")
|
|
elif x_ip is not None and self.kv_cache is None: #stand-in
|
|
# First pass: cache IP keys/values and compute attention
|
|
self.kv_cache = {"k_ip": k_ip.detach(), "v_ip": v_ip.detach()}
|
|
y = self.self_attn.forward_ip(q, k, v, q_ip, k_ip, v_ip, seq_lens)
|
|
elif self.kv_cache is not None:
|
|
# Subsequent passes: use cached IP keys/values
|
|
k_ip = self.kv_cache["k_ip"]
|
|
v_ip = self.kv_cache["v_ip"]
|
|
full_k = torch.cat([k, k_ip], dim=1)
|
|
full_v = torch.cat([v, v_ip], dim=1)
|
|
y = self.self_attn.forward(q, full_k, full_v, seq_lens)
|
|
elif is_longcat and num_cond_latents is not None and num_cond_latents > 0:
|
|
num_cond_latents_thw = num_cond_latents * (N // num_latent_frames)
|
|
# process the condition tokens
|
|
x_cond = self.self_attn.forward(
|
|
q[:, :num_cond_latents_thw].contiguous(),
|
|
k[:, :num_cond_latents_thw].contiguous(),
|
|
v[:, :num_cond_latents_thw].contiguous(),
|
|
seq_lens)
|
|
# process the noise tokens
|
|
x_noise = self.self_attn.forward(q[:, num_cond_latents_thw:].contiguous(), k, v, seq_lens)
|
|
# merge x_cond and x_noise
|
|
y = torch.cat([x_cond, x_noise], dim=1).contiguous()
|
|
else:
|
|
y = self.self_attn.forward(q, k, v, seq_lens, lynx_ref_feature=lynx_ref_feature, lynx_ref_scale=lynx_ref_scale)
|
|
|
|
if lynx_ref_feature is None and self.self_attn.ref_adapter is not None:
|
|
lynx_ref_feature = input_x
|
|
|
|
# FETA
|
|
if enhance_enabled:
|
|
y.mul_(feta_scores)
|
|
|
|
# ReCamMaster
|
|
if camera_embed is not None:
|
|
y = self.projector(y)
|
|
|
|
# Stand-in
|
|
if x_ip is not None:
|
|
y, y_ip = (
|
|
y[:, : -self.cond_size],
|
|
y[:, -self.cond_size :],
|
|
)
|
|
|
|
# S2V
|
|
if zero_timestep:
|
|
z = []
|
|
for i in range(2):
|
|
z.append(y[:, self.seg_idx[i]:self.seg_idx[i + 1]] * gate_msa[:, i:i + 1])
|
|
y = torch.cat(z, dim=1)
|
|
x = x.add(y)
|
|
else:
|
|
if not is_longcat:
|
|
x = x.addcmul(y, gate_msa)
|
|
else:
|
|
x = x + (y.view(B, -1, N//T, C).float() * gate_msa).to(input_dtype).view(B, -1, C)
|
|
del y, gate_msa
|
|
|
|
# cross-attention & ffn function
|
|
if context is not None:
|
|
if x_ovi is not None:
|
|
#audio
|
|
og_ovi_x = x_ovi
|
|
x_ovi = x_ovi + self.audio_block.cross_attn(self.audio_block.norm3(x_ovi), context_ovi, grid_sizes_ovi,
|
|
src_freqs=freqs_ovi,
|
|
target_seq=x,
|
|
target_seq_lens=seq_lens,
|
|
target_grid_sizes=grid_sizes,
|
|
target_freqs=freqs)
|
|
y = self.audio_block.ffn(torch.addcmul(shift_mlp_ovi, self.audio_block.norm2(x_ovi), 1 + scale_mlp_ovi))
|
|
x_ovi = x_ovi.addcmul(y, gate_mlp_ovi)
|
|
|
|
# video
|
|
x = x + self.cross_attn(self.norm3(x), context, grid_sizes,
|
|
src_freqs=freqs,
|
|
target_seq=og_ovi_x,
|
|
target_seq_lens=seq_lens_ovi,
|
|
target_grid_sizes=grid_sizes_ovi,
|
|
target_freqs=freqs_ovi)
|
|
elif split_attn:
|
|
if nag_context is not None:
|
|
raise NotImplementedError("nag_context is not supported in split_cross_attn_ffn")
|
|
x = self.split_cross_attn_ffn(x, context, shift_mlp, scale_mlp, gate_mlp, clip_embed, grid_sizes)
|
|
return x, x_ip, lynx_ref_feature, x_ovi
|
|
else:
|
|
x = x + self.cross_attn(self.norm3(x.to(self.norm3.weight.dtype)).to(input_dtype), context, grid_sizes, clip_embed=clip_embed, audio_proj=audio_proj, audio_scale=audio_scale,
|
|
num_latent_frames=num_latent_frames, nag_params=nag_params, nag_context=nag_context, is_uncond=is_uncond,
|
|
rope_func=self.rope_func, inner_t=inner_t, inner_c=inner_c, cross_freqs=cross_freqs,
|
|
adapter_proj=adapter_proj, ip_scale=ip_scale, orig_seq_len=original_seq_len, lynx_x_ip=lynx_x_ip, lynx_ip_scale=lynx_ip_scale, num_cond_latents=num_cond_latents)
|
|
x = x.to(input_dtype)
|
|
# MultiTalk
|
|
if multitalk_audio_embedding is not None and not isinstance(self, VaceWanAttentionBlock):
|
|
x_audio = self.audio_cross_attn(self.norm_x(x.to(self.norm_x.weight.dtype)).to(input_dtype), encoder_hidden_states=multitalk_audio_embedding,
|
|
shape=grid_sizes[0], x_ref_attn_map=x_ref_attn_map, human_num=human_num)
|
|
x = x.add(x_audio, alpha=audio_scale)
|
|
|
|
# MTV-Crafter Motion Attention
|
|
if self.use_motion_attn and mtv_motion_tokens is not None and mtv_motion_rotary_emb is not None:
|
|
x_motion = self.motion_attn(self.norm4(x), mtv_motion_tokens, mtv_motion_rotary_emb, grid_sizes, mtv_freqs)
|
|
x = x.add(x_motion, alpha=mtv_strength)
|
|
|
|
# HuMo Audio Cross-Attention
|
|
if humo_audio_input is not None:
|
|
x = self.audio_cross_attn_wrapper(x, humo_audio_input, grid_sizes, humo_audio_scale)
|
|
|
|
|
|
# ffn
|
|
if self.rope_func == "comfy_chunked":
|
|
x_ffn = self.ffn_chunked(x, shift_mlp, scale_mlp)
|
|
else:
|
|
if zero_timestep:
|
|
norm2_x = self.norm2(x)
|
|
parts = []
|
|
for i in range(2):
|
|
parts.append(norm2_x[:, self.seg_idx[i]:self.seg_idx[i + 1]] *
|
|
(1 + scale_mlp[:, i:i + 1]) + shift_mlp[:, i:i + 1])
|
|
norm2_x = torch.cat(parts, dim=1)
|
|
x_ffn = self.ffn(norm2_x)
|
|
else:
|
|
if not is_longcat:
|
|
mod_x = torch.addcmul(shift_mlp, self.norm2(x.to(shift_mlp.dtype)), 1 + scale_mlp)
|
|
else:
|
|
mod_x = torch.addcmul(shift_mlp, self.norm2(x.view(B, -1, N//T, C).float()), 1 + scale_mlp).view(B, -1, C)
|
|
x_ffn = self.ffn(mod_x.to(input_dtype))
|
|
del shift_mlp, scale_mlp
|
|
|
|
# gate_mlp
|
|
if zero_timestep:
|
|
z = []
|
|
for i in range(2):
|
|
z.append(x_ffn[:, self.seg_idx[i]:self.seg_idx[i + 1]] * gate_mlp[:, i:i + 1])
|
|
x_ffn = torch.cat(z, dim=1)
|
|
x = x.add(x_ffn)
|
|
else:
|
|
if not is_longcat:
|
|
x = x.addcmul(x_ffn.to(gate_mlp.dtype), gate_mlp).to(input_dtype)
|
|
else:
|
|
x = x + (gate_mlp * x_ffn.view(B, -1, N//T, C).float()).to(input_dtype).view(B, -1, C)
|
|
del gate_mlp
|
|
|
|
if x_ip is not None: #stand-in
|
|
x_ip = x_ip.addcmul(y_ip, gate_msa_ip)
|
|
y_ip = self.ffn(torch.addcmul(shift_mlp_ip, self.norm2(x_ip), 1 + scale_mlp_ip))
|
|
x_ip = x_ip.addcmul(y_ip, gate_mlp_ip)
|
|
return x, x_ip, lynx_ref_feature, x_ovi
|
|
|
|
@torch.compiler.disable()
|
|
def split_cross_attn_ffn(self, x, context, shift_mlp, scale_mlp, gate_mlp, clip_embed=None, grid_sizes=None):
|
|
# Get number of prompts
|
|
num_prompts = context.shape[0]
|
|
num_clip_embeds = 0 if clip_embed is None else clip_embed.shape[0]
|
|
num_segments = max(num_prompts, num_clip_embeds)
|
|
|
|
# Extract spatial dimensions
|
|
frames, height, width = grid_sizes[0] # Assuming batch size 1
|
|
tokens_per_frame = height * width
|
|
|
|
# Distribute frames across prompts
|
|
frames_per_segment = max(1, frames // num_segments)
|
|
|
|
# Process each prompt segment
|
|
x_combined = torch.zeros_like(x)
|
|
|
|
for i in range(num_segments):
|
|
# Calculate frame boundaries for this segment
|
|
start_frame = i * frames_per_segment
|
|
end_frame = min((i+1) * frames_per_segment, frames) if i < num_segments-1 else frames
|
|
|
|
# Convert frame indices to token indices
|
|
start_idx = start_frame * tokens_per_frame
|
|
end_idx = end_frame * tokens_per_frame
|
|
segment_indices = torch.arange(start_idx, end_idx, device=x.device, dtype=torch.long)
|
|
|
|
# Get prompt segment (cycle through available prompts if needed)
|
|
prompt_idx = i % num_prompts
|
|
segment_context = context[prompt_idx:prompt_idx+1]
|
|
|
|
# Handle clip_embed for this segment (cycle through available embeddings)
|
|
segment_clip_embed = None
|
|
if clip_embed is not None:
|
|
clip_idx = i % num_clip_embeds
|
|
segment_clip_embed = clip_embed[clip_idx:clip_idx+1]
|
|
|
|
# Get tensor segment
|
|
x_segment = x[:, segment_indices, :].to(self.norm3.weight.dtype)
|
|
|
|
# Process segment with its prompt and clip embedding
|
|
processed_segment = self.cross_attn(self.norm3(x_segment), segment_context, clip_embed=segment_clip_embed)
|
|
processed_segment = processed_segment.to(x.dtype)
|
|
|
|
# Add to combined result
|
|
x_combined[:, segment_indices, :] = processed_segment
|
|
|
|
# Continue with FFN
|
|
x = x + x_combined
|
|
y = self.ffn_chunked(x, shift_mlp, scale_mlp)
|
|
x = x.addcmul(y, gate_mlp)
|
|
return x
|
|
|
|
class VaceWanAttentionBlock(WanAttentionBlock):
|
|
def __init__(
|
|
self,
|
|
cross_attn_type,
|
|
in_features,
|
|
out_features,
|
|
ffn_dim,
|
|
ffn2_dim,
|
|
num_heads,
|
|
qk_norm=True,
|
|
cross_attn_norm=False,
|
|
eps=1e-6,
|
|
block_id=0,
|
|
attention_mode='sdpa',
|
|
rope_func="comfy",
|
|
rms_norm_function="default"
|
|
):
|
|
super().__init__(cross_attn_type, in_features, out_features, ffn_dim, ffn2_dim, num_heads, qk_norm, cross_attn_norm, eps, attention_mode, rope_func, rms_norm_function=rms_norm_function)
|
|
|
|
self.register_buffer('block_id', torch.tensor(block_id, dtype=torch.long))
|
|
|
|
if torch.equal(self.block_id, torch.tensor(0)):
|
|
self.before_proj = nn.Linear(in_features, out_features)
|
|
self.after_proj = nn.Linear(in_features, out_features)
|
|
|
|
def forward(self, c, **kwargs):
|
|
return super().forward(c, **kwargs)
|
|
|
|
class BaseWanAttentionBlock(WanAttentionBlock):
|
|
def __init__(
|
|
self,
|
|
cross_attn_type,
|
|
in_features,
|
|
out_features,
|
|
ffn_dim,
|
|
ffn2_dim,
|
|
num_heads,
|
|
qk_norm=True,
|
|
cross_attn_norm=False,
|
|
eps=1e-6,
|
|
block_id=None,
|
|
block_idx=0,
|
|
attention_mode='sdpa',
|
|
rope_func="comfy",
|
|
rms_norm_function="default",
|
|
lynx_ip_layers=None,
|
|
lynx_ref_layers=None,
|
|
):
|
|
super().__init__(cross_attn_type, in_features, out_features, ffn_dim, ffn2_dim, num_heads, qk_norm,
|
|
cross_attn_norm, eps, attention_mode, rope_func, rms_norm_function=rms_norm_function,
|
|
block_idx=block_idx, lynx_ip_layers=lynx_ip_layers, lynx_ref_layers=lynx_ref_layers)
|
|
if block_id is not None:
|
|
self.register_buffer('block_id', torch.tensor(block_id, dtype=torch.long))
|
|
else:
|
|
self.block_id = None
|
|
|
|
def forward(self, x, vace_hints=None, vace_context_scale=[1.0], **kwargs):
|
|
x, x_ip, lynx_ref_feature, x_ovi = super().forward(x, **kwargs)
|
|
if vace_hints is None:
|
|
return x, x_ip, lynx_ref_feature, x_ovi
|
|
|
|
if self.block_id is not None:
|
|
for i in range(len(vace_hints)):
|
|
x.add_(vace_hints[i][self.block_id].to(x.device), alpha=vace_context_scale[i])
|
|
return x, x_ip, lynx_ref_feature, x_ovi
|
|
|
|
class Head(nn.Module):
|
|
|
|
def __init__(self, dim, out_dim, patch_size, eps=1e-6):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.out_dim = out_dim
|
|
self.patch_size = patch_size
|
|
self.eps = eps
|
|
|
|
# layers
|
|
out_dim = math.prod(patch_size) * out_dim
|
|
self.norm = WanLayerNorm(dim, eps)
|
|
self.head = nn.Linear(dim, out_dim)
|
|
|
|
# modulation
|
|
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)
|
|
|
|
def get_mod(self, e):
|
|
if e.dim() == 2:
|
|
return (self.modulation + e.unsqueeze(1)).chunk(2, dim=1)
|
|
elif e.dim() == 3:
|
|
e = (self.modulation.unsqueeze(2) + e.unsqueeze(1)).chunk(2, dim=1)
|
|
return [ei.squeeze(1) for ei in e]
|
|
|
|
def forward(self, x, e, **kwargs):
|
|
r"""
|
|
Args:
|
|
x(Tensor): Shape [B, L1, C]
|
|
e(Tensor): Shape [B, C]
|
|
"""
|
|
|
|
e = self.get_mod(e.to(x.device))
|
|
x = self.head(self.norm(x.float()).to(x.dtype).mul_(1 + e[1]).add_(e[0]))
|
|
return x
|
|
|
|
class Head_adaLN(nn.Module):
|
|
|
|
def __init__(self, dim, out_dim, patch_size, eps=1e-6, adaln_tembed_dim=512):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.out_dim = out_dim
|
|
self.patch_size = patch_size
|
|
self.eps = eps
|
|
self.adaln_tembed_dim = adaln_tembed_dim
|
|
|
|
# layers
|
|
out_dim = math.prod(patch_size) * out_dim
|
|
self.norm = WanLayerNorm(dim, eps)
|
|
self.head = nn.Linear(dim, out_dim)
|
|
|
|
# modulation
|
|
self.modulation = nn.Sequential(nn.SiLU(), nn.Linear(adaln_tembed_dim, 2 * self.dim, bias=True))
|
|
|
|
def forward(self, x, e, temp_length):
|
|
r"""
|
|
Args:
|
|
x(Tensor): Shape [B, L1, C]
|
|
e(Tensor): Shape [B, C]
|
|
"""
|
|
B, N, C = x.shape
|
|
T = temp_length
|
|
self.modulation.to(torch.float32)
|
|
shift, scale = self.modulation(e).unsqueeze(2).chunk(2, dim=-1) # [B, T, 1, C]
|
|
return self.head(self.norm(x.view(B, T, -1, C).float()).mul_(1 + scale).add_(shift).view(B, N, C).to(x.dtype))
|
|
|
|
|
|
|
|
class MLPProj(torch.nn.Module):
|
|
|
|
def __init__(self, in_dim, out_dim, fl_pos_emb=False):
|
|
super().__init__()
|
|
|
|
self.proj = torch.nn.Sequential(
|
|
torch.nn.LayerNorm(in_dim), torch.nn.Linear(in_dim, in_dim),
|
|
torch.nn.GELU(), torch.nn.Linear(in_dim, out_dim),
|
|
torch.nn.LayerNorm(out_dim))
|
|
if fl_pos_emb: # NOTE: we only use this for `fl2v`
|
|
self.emb_pos = nn.Parameter(torch.zeros(1, 257 * 2, 1280))
|
|
|
|
def forward(self, image_embeds):
|
|
if hasattr(self, 'emb_pos'):
|
|
image_embeds = image_embeds + self.emb_pos.to(image_embeds.device)
|
|
clip_extra_context_tokens = self.proj(image_embeds)
|
|
return clip_extra_context_tokens
|
|
|
|
from .s2v.auxi_blocks import MotionEncoder_tc
|
|
|
|
|
|
class CausalAudioEncoder(nn.Module):
|
|
|
|
def __init__(self,
|
|
dim=5120,
|
|
num_layers=25,
|
|
out_dim=2048,
|
|
video_rate=8,
|
|
num_token=4,
|
|
need_global=False):
|
|
super().__init__()
|
|
self.encoder = MotionEncoder_tc(
|
|
in_dim=dim,
|
|
hidden_dim=out_dim,
|
|
num_heads=num_token,
|
|
need_global=need_global)
|
|
weight = torch.ones((1, num_layers, 1, 1)) * 0.01
|
|
|
|
self.weights = torch.nn.Parameter(weight)
|
|
self.act = torch.nn.SiLU()
|
|
|
|
def forward(self, features):
|
|
# features B * num_layers * dim * video_length
|
|
weights = self.act(self.weights)
|
|
weights_sum = weights.sum(dim=1, keepdims=True)
|
|
weighted_feat = ((features * weights) / weights_sum).sum(
|
|
dim=1) # b dim f
|
|
weighted_feat = weighted_feat.permute(0, 2, 1) # b f dim
|
|
res = self.encoder(weighted_feat) # b f n dim
|
|
|
|
return res # b f n dim
|
|
|
|
|
|
class AudioCrossAttention(WanT2VCrossAttention):
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
|
|
|
|
class AudioInjector_WAN(nn.Module):
|
|
|
|
def __init__(self,
|
|
all_modules,
|
|
all_modules_names,
|
|
dim=2048,
|
|
num_heads=32,
|
|
inject_layer=[0, 27],
|
|
root_net=None,
|
|
enable_adain=False,
|
|
adain_dim=2048,
|
|
need_adain_ont=False,
|
|
attention_mode='sdpa'):
|
|
super().__init__()
|
|
self.injected_block_id = {}
|
|
audio_injector_id = 0
|
|
for mod_name, mod in zip(all_modules_names, all_modules):
|
|
if isinstance(mod, WanAttentionBlock):
|
|
for inject_id in inject_layer:
|
|
if f'transformer_blocks.{inject_id}' in mod_name:
|
|
self.injected_block_id[inject_id] = audio_injector_id
|
|
audio_injector_id += 1
|
|
|
|
self.injector = nn.ModuleList([
|
|
AudioCrossAttention(
|
|
in_features=dim,
|
|
out_features=dim,
|
|
num_heads=num_heads,
|
|
qk_norm=True,
|
|
attention_mode=attention_mode
|
|
) for _ in range(audio_injector_id)
|
|
])
|
|
self.injector_pre_norm_feat = nn.ModuleList([
|
|
nn.LayerNorm(
|
|
dim,
|
|
elementwise_affine=False,
|
|
eps=1e-6,
|
|
) for _ in range(audio_injector_id)
|
|
])
|
|
self.injector_pre_norm_vec = nn.ModuleList([
|
|
nn.LayerNorm(
|
|
dim,
|
|
elementwise_affine=False,
|
|
eps=1e-6,
|
|
) for _ in range(audio_injector_id)
|
|
])
|
|
if enable_adain:
|
|
self.injector_adain_layers = nn.ModuleList([
|
|
AdaLayerNorm(
|
|
output_dim=dim * 2, embedding_dim=adain_dim)
|
|
for _ in range(audio_injector_id)
|
|
])
|
|
if need_adain_ont:
|
|
self.injector_adain_output_layers = nn.ModuleList(
|
|
[nn.Linear(dim, dim) for _ in range(audio_injector_id)])
|
|
|
|
class WanModel(torch.nn.Module):
|
|
def __init__(self,
|
|
model_type='t2v',
|
|
patch_size=(1, 2, 2),
|
|
text_len=512,
|
|
in_dim=16,
|
|
dim=2048,
|
|
in_features=5120,
|
|
out_features=5120,
|
|
ffn_dim=8192,
|
|
ffn2_dim=8192,
|
|
freq_dim=256,
|
|
text_dim=4096,
|
|
out_dim=16,
|
|
num_heads=16,
|
|
num_layers=32,
|
|
qk_norm=True,
|
|
cross_attn_norm=True,
|
|
eps=1e-6,
|
|
attention_mode='sdpa',
|
|
rope_func='comfy',
|
|
rms_norm_function='default',
|
|
main_device=torch.device('cuda'),
|
|
offload_device=torch.device('cpu'),
|
|
dtype=torch.float16,
|
|
teacache_coefficients=[],
|
|
magcache_ratios=[],
|
|
vace_layers=None,
|
|
vace_in_dim=None,
|
|
inject_sample_info=False,
|
|
add_ref_conv=False,
|
|
in_dim_ref_conv=16,
|
|
add_control_adapter=False,
|
|
in_dim_control_adapter=24,
|
|
use_motion_attn=False,
|
|
#s2v
|
|
cond_dim=0,
|
|
audio_dim=1024,
|
|
num_audio_token=4,
|
|
enable_adain=False,
|
|
adain_mode="attn_norm",
|
|
audio_inject_layers=[0, 4, 8, 12, 16, 20, 24, 27, 30, 33, 36, 39],
|
|
zero_timestep=False,
|
|
humo_audio=False,
|
|
# WanAnimate
|
|
is_wananimate=False,
|
|
motion_encoder_dim=512,
|
|
# lynx
|
|
lynx_ip_layers=None,
|
|
lynx_ref_layers=None,
|
|
# ovi
|
|
is_ovi_audio_model=False,
|
|
# LongCat
|
|
is_longcat=False,
|
|
):
|
|
r"""
|
|
Initialize the diffusion model backbone.
|
|
|
|
Args:
|
|
model_type (`str`, *optional*, defaults to 't2v'):
|
|
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
|
|
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
|
|
3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
|
|
text_len (`int`, *optional*, defaults to 512):
|
|
Fixed length for text embeddings
|
|
in_dim (`int`, *optional*, defaults to 16):
|
|
Input video channels (C_in)
|
|
dim (`int`, *optional*, defaults to 2048):
|
|
Hidden dimension of the transformer
|
|
ffn_dim (`int`, *optional*, defaults to 8192):
|
|
Intermediate dimension in feed-forward network
|
|
freq_dim (`int`, *optional*, defaults to 256):
|
|
Dimension for sinusoidal time embeddings
|
|
text_dim (`int`, *optional*, defaults to 4096):
|
|
Input dimension for text embeddings
|
|
out_dim (`int`, *optional*, defaults to 16):
|
|
Output video channels (C_out)
|
|
num_heads (`int`, *optional*, defaults to 16):
|
|
Number of attention heads
|
|
num_layers (`int`, *optional*, defaults to 32):
|
|
Number of transformer blocks
|
|
qk_norm (`bool`, *optional*, defaults to True):
|
|
Enable query/key normalization
|
|
cross_attn_norm (`bool`, *optional*, defaults to False):
|
|
Enable cross-attention normalization
|
|
eps (`float`, *optional*, defaults to 1e-6):
|
|
Epsilon value for normalization layers
|
|
"""
|
|
|
|
super().__init__()
|
|
|
|
self.model_type = model_type
|
|
|
|
self.patch_size = patch_size
|
|
self.text_len = text_len
|
|
self.in_dim = in_dim
|
|
self.dim = dim
|
|
self.in_features = in_features
|
|
self.out_features = out_features
|
|
self.ffn_dim = ffn_dim
|
|
self.ffn2_dim = ffn2_dim
|
|
self.freq_dim = freq_dim
|
|
self.text_dim = text_dim
|
|
self.out_dim = out_dim
|
|
self.num_heads = num_heads
|
|
self.num_layers = num_layers
|
|
self.qk_norm = qk_norm
|
|
self.cross_attn_norm = cross_attn_norm
|
|
self.eps = eps
|
|
self.attention_mode = attention_mode
|
|
self.rope_func = rope_func
|
|
self.main_device = main_device
|
|
self.offload_device = offload_device
|
|
self.vace_layers = vace_layers
|
|
self.device = main_device
|
|
self.patched_linear = False
|
|
|
|
self.blocks_to_swap = -1
|
|
self.offload_txt_emb = False
|
|
self.offload_img_emb = False
|
|
self.vace_blocks_to_swap = -1
|
|
|
|
self.cache_device = offload_device
|
|
|
|
#init TeaCache variables
|
|
self.enable_teacache = False
|
|
self.rel_l1_thresh = 0.15
|
|
self.teacache_start_step= 0
|
|
self.teacache_end_step = -1
|
|
self.teacache_state = TeaCacheState(cache_device=self.cache_device)
|
|
self.teacache_coefficients = teacache_coefficients
|
|
self.teacache_use_coefficients = False
|
|
self.teacache_mode = 'e'
|
|
|
|
#init MagCache variables
|
|
self.enable_magcache = False
|
|
self.magcache_state = MagCacheState(cache_device=self.cache_device)
|
|
self.magcache_thresh = 0.24
|
|
self.magcache_K = 4
|
|
self.magcache_start_step = 0
|
|
self.magcache_end_step = -1
|
|
self.magcache_ratios = magcache_ratios
|
|
|
|
#init EasyCache variables
|
|
self.enable_easycache = False
|
|
self.easycache_thresh = 0.1
|
|
self.easycache_start_step = 0
|
|
self.easycache_end_step = -1
|
|
self.easycache_state = EasyCacheState(cache_device=self.cache_device)
|
|
|
|
self.slg_blocks = None
|
|
self.slg_start_percent = 0.0
|
|
self.slg_end_percent = 1.0
|
|
|
|
self.use_non_blocking = False
|
|
self.prefetch_blocks = 0
|
|
self.block_swap_debug = False
|
|
|
|
self.video_attention_split_steps = []
|
|
self.lora_scheduling_enabled = False
|
|
|
|
self.multitalk_model_type = "none"
|
|
|
|
self.lynx_ip_layers = lynx_ip_layers
|
|
self.lynx_ref_layers = lynx_ref_layers
|
|
|
|
self.humo_audio = humo_audio
|
|
|
|
self.motion_encoder_dim = motion_encoder_dim
|
|
|
|
self.base_dtype = dtype
|
|
|
|
self.is_ovi_audio_model = patch_size == [1]
|
|
|
|
self.audio_model = None
|
|
|
|
self.is_longcat = is_longcat
|
|
|
|
# embeddings
|
|
if not self.is_ovi_audio_model:
|
|
self.patch_embedding = nn.Conv3d(in_dim, dim, kernel_size=patch_size, stride=patch_size)
|
|
else:
|
|
from ...Ovi.audio_model_layers import ChannelLastConv1d, ConvMLP
|
|
self.patch_embedding = nn.Sequential(
|
|
ChannelLastConv1d(in_dim, dim, kernel_size=7, padding=3),
|
|
nn.SiLU(),
|
|
ConvMLP(dim, dim * 4, kernel_size=7, padding=3),
|
|
)
|
|
|
|
self.original_patch_embedding = self.patch_embedding
|
|
self.expanded_patch_embedding = self.patch_embedding
|
|
|
|
if model_type != 'no_cross_attn':
|
|
self.text_embedding = nn.Sequential(
|
|
nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'),
|
|
nn.Linear(dim, dim))
|
|
|
|
if not is_longcat:
|
|
self.time_embedding = nn.Sequential(nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
|
|
self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6))
|
|
else:
|
|
from ...LongCat.layers import TimestepEmbedder
|
|
adaln_tembed_dim = 512
|
|
self.time_embedding = TimestepEmbedder(t_embed_dim=adaln_tembed_dim, frequency_embedding_size=freq_dim)
|
|
|
|
|
|
if vace_layers is not None:
|
|
self.vace_layers = [i for i in range(0, self.num_layers, 2)] if vace_layers is None else vace_layers
|
|
self.vace_in_dim = self.in_dim if vace_in_dim is None else vace_in_dim
|
|
|
|
self.vace_layers_mapping = {i: n for n, i in enumerate(self.vace_layers)}
|
|
|
|
# vace blocks
|
|
self.vace_blocks = nn.ModuleList([
|
|
VaceWanAttentionBlock('t2v_cross_attn', self.in_features, self.out_features, self.ffn_dim, self.ffn2_dim,self.num_heads, self.qk_norm,
|
|
self.cross_attn_norm, self.eps, block_id=i, attention_mode=self.attention_mode, rope_func=self.rope_func, rms_norm_function=rms_norm_function)
|
|
for i in self.vace_layers
|
|
])
|
|
|
|
# vace patch embeddings
|
|
self.vace_patch_embedding = nn.Conv3d(
|
|
self.vace_in_dim, self.dim, kernel_size=self.patch_size, stride=self.patch_size
|
|
)
|
|
self.blocks = nn.ModuleList([
|
|
BaseWanAttentionBlock('t2v_cross_attn', self.in_features, self.out_features, ffn_dim, self.ffn2_dim, num_heads,
|
|
qk_norm, cross_attn_norm, eps,
|
|
attention_mode=self.attention_mode, rope_func=self.rope_func, rms_norm_function=rms_norm_function,
|
|
block_id=self.vace_layers_mapping[i] if i in self.vace_layers else None, lynx_ip_layers=lynx_ip_layers, lynx_ref_layers=lynx_ref_layers, block_idx=i)
|
|
for i in range(num_layers)
|
|
])
|
|
else:
|
|
# blocks
|
|
if model_type == 't2v' or model_type == 's2v':
|
|
cross_attn_type = 't2v_cross_attn'
|
|
elif model_type == 'i2v' or model_type == 'fl2v':
|
|
cross_attn_type = 'i2v_cross_attn'
|
|
else:
|
|
cross_attn_type = 'no_cross_attn'
|
|
|
|
self.blocks = nn.ModuleList([
|
|
WanAttentionBlock(cross_attn_type, self.in_features, self.out_features, ffn_dim, ffn2_dim, num_heads,
|
|
qk_norm, cross_attn_norm, eps,
|
|
attention_mode=self.attention_mode, rope_func=self.rope_func, rms_norm_function=rms_norm_function,
|
|
use_motion_attn=(i % 4 == 0 and use_motion_attn), use_humo_audio_attn=self.humo_audio,
|
|
face_fuser_block = (i % 5 == 0 and is_wananimate), lynx_ip_layers=lynx_ip_layers, lynx_ref_layers=lynx_ref_layers,
|
|
block_idx=i, is_longcat=is_longcat)
|
|
for i in range(num_layers)
|
|
])
|
|
#MTV Crafter
|
|
if use_motion_attn:
|
|
self.pad_motion_tokens = torch.zeros(1, 1, 2048)
|
|
|
|
# head
|
|
if not is_longcat:
|
|
self.head = Head(dim, out_dim, patch_size, eps)
|
|
else:
|
|
self.head = Head_adaLN(dim, out_dim, patch_size, eps, adaln_tembed_dim=512)
|
|
|
|
d = self.dim // self.num_heads
|
|
self.rope_embedder = EmbedND_RifleX(
|
|
d,
|
|
10000.0,
|
|
[d - 4 * (d // 6), 2 * (d // 6), 2 * (d // 6)],
|
|
num_frames=None,
|
|
k=None,
|
|
)
|
|
self.cached_freqs = self.cached_shape = self.cached_cond = None
|
|
|
|
# buffers (don't use register_buffer otherwise dtype will be changed in to())
|
|
assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
|
|
|
|
if model_type == 'i2v' or model_type == 'fl2v':
|
|
self.img_emb = MLPProj(1280, dim, fl_pos_emb=model_type == 'fl2v')
|
|
|
|
#skyreels v2
|
|
if inject_sample_info:
|
|
self.fps_embedding = nn.Embedding(2, dim)
|
|
self.fps_projection = nn.Sequential(nn.Linear(dim, dim), nn.SiLU(), nn.Linear(dim, dim * 6))
|
|
#fun 1.1
|
|
if add_ref_conv:
|
|
self.ref_conv = nn.Conv2d(in_dim_ref_conv, dim, kernel_size=patch_size[1:], stride=patch_size[1:])
|
|
else:
|
|
self.ref_conv = None
|
|
|
|
if add_control_adapter:
|
|
from .wan_camera_adapter import SimpleAdapter
|
|
self.control_adapter = SimpleAdapter(in_dim_control_adapter, dim, kernel_size=patch_size[1:], stride=patch_size[1:])
|
|
else:
|
|
self.control_adapter = None
|
|
|
|
#S2V
|
|
self.zero_timestep = self.audio_injector = self.trainable_cond_mask =None
|
|
if cond_dim > 0:
|
|
self.cond_encoder = nn.Conv3d(
|
|
cond_dim,
|
|
self.dim,
|
|
kernel_size=self.patch_size,
|
|
stride=self.patch_size)
|
|
if self.model_type == 's2v':
|
|
self.enable_adain = enable_adain
|
|
self.casual_audio_encoder = CausalAudioEncoder(
|
|
dim=audio_dim,
|
|
out_dim=self.dim,
|
|
num_token=num_audio_token,
|
|
need_global=enable_adain)
|
|
all_modules, all_modules_names = torch_dfs(
|
|
self.blocks, parent_name="root.transformer_blocks")
|
|
self.audio_injector = AudioInjector_WAN(
|
|
all_modules,
|
|
all_modules_names,
|
|
dim=self.dim,
|
|
num_heads=self.num_heads,
|
|
inject_layer=audio_inject_layers,
|
|
root_net=self,
|
|
enable_adain=enable_adain,
|
|
adain_dim=self.dim,
|
|
need_adain_ont=adain_mode != "attn_norm",
|
|
attention_mode=attention_mode
|
|
)
|
|
self.trainable_cond_mask = nn.Embedding(3, self.dim)
|
|
|
|
self.frame_packer = FramePackMotioner(
|
|
inner_dim=self.dim,
|
|
num_heads=self.num_heads,
|
|
zip_frame_buckets=[1, 2, 16],
|
|
drop_mode='padd')
|
|
self.adain_mode = adain_mode
|
|
self.zero_timestep = zero_timestep
|
|
|
|
# HuMo Audio
|
|
if self.humo_audio:
|
|
from ...HuMo.audio_proj import AudioProjModel
|
|
self.audio_proj = AudioProjModel(seq_len=8, blocks=5, channels=1280,
|
|
intermediate_dim=512, output_dim=1536, context_tokens=16)
|
|
# WanAnimate
|
|
self.motion_encoder = self.pose_patch_embedding = self.face_encoder = self.face_adapter = None
|
|
if is_wananimate:
|
|
from .wananimate.motion_encoder import MotionExtractor
|
|
from .wananimate.face_blocks import FaceEncoder
|
|
self.pose_patch_embedding = nn.Conv3d(16, dim, kernel_size=patch_size, stride=patch_size)
|
|
self.motion_encoder = MotionExtractor()
|
|
|
|
self.face_encoder = FaceEncoder(
|
|
in_dim=motion_encoder_dim,
|
|
out_dim=self.dim,
|
|
num_heads=4,
|
|
dtype=dtype
|
|
)
|
|
|
|
def block_swap(self, blocks_to_swap, offload_txt_emb=False, offload_img_emb=False, vace_blocks_to_swap=None, prefetch_blocks=0, block_swap_debug=False):
|
|
# Clamp blocks_to_swap to valid range
|
|
blocks_to_swap = max(0, min(blocks_to_swap, len(self.blocks)))
|
|
|
|
log.info(f"Swapping {blocks_to_swap} transformer blocks")
|
|
self.blocks_to_swap = blocks_to_swap
|
|
self.prefetch_blocks = prefetch_blocks
|
|
self.block_swap_debug = block_swap_debug
|
|
|
|
self.offload_img_emb = offload_img_emb
|
|
self.offload_txt_emb = offload_txt_emb
|
|
|
|
total_offload_memory = 0
|
|
total_main_memory = 0
|
|
|
|
# Calculate the index where swapping starts
|
|
swap_start_idx = len(self.blocks) - blocks_to_swap
|
|
|
|
for b, block in tqdm(enumerate(self.blocks), total=len(self.blocks), desc="Initializing block swap"):
|
|
block_memory = get_module_memory_mb(block)
|
|
|
|
if b < swap_start_idx:
|
|
block.to(self.main_device)
|
|
total_main_memory += block_memory
|
|
else:
|
|
block.to(self.offload_device, non_blocking=self.use_non_blocking)
|
|
total_offload_memory += block_memory
|
|
|
|
if blocks_to_swap != -1 and vace_blocks_to_swap == 0:
|
|
vace_blocks_to_swap = 1
|
|
|
|
if vace_blocks_to_swap > 0 and self.vace_layers is not None:
|
|
# Clamp vace_blocks_to_swap to valid range
|
|
vace_blocks_to_swap = max(0, min(vace_blocks_to_swap, len(self.vace_blocks)))
|
|
self.vace_blocks_to_swap = vace_blocks_to_swap
|
|
|
|
# Calculate the index where VACE swapping starts
|
|
vace_swap_start_idx = len(self.vace_blocks) - vace_blocks_to_swap
|
|
|
|
for b, block in tqdm(enumerate(self.vace_blocks), total=len(self.vace_blocks), desc="Initializing vace block swap"):
|
|
block_memory = get_module_memory_mb(block)
|
|
|
|
if b < vace_swap_start_idx:
|
|
block.to(self.main_device)
|
|
total_main_memory += block_memory
|
|
else:
|
|
block.to(self.offload_device, non_blocking=self.use_non_blocking)
|
|
total_offload_memory += block_memory
|
|
|
|
mm.soft_empty_cache()
|
|
gc.collect()
|
|
|
|
log.info("----------------------")
|
|
log.info(f"Block swap memory summary:")
|
|
log.info(f"Transformer blocks on {self.offload_device}: {total_offload_memory:.2f}MB")
|
|
log.info(f"Transformer blocks on {self.main_device}: {total_main_memory:.2f}MB")
|
|
log.info(f"Total memory used by transformer blocks: {(total_offload_memory + total_main_memory):.2f}MB")
|
|
log.info(f"Non-blocking memory transfer: {self.use_non_blocking}")
|
|
log.info("----------------------")
|
|
|
|
def forward_vace(
|
|
self,
|
|
x,
|
|
vace_context,
|
|
seq_len,
|
|
kwargs
|
|
):
|
|
# embeddings
|
|
c = [self.vace_patch_embedding(u.unsqueeze(0).float()).to(x.dtype) for u in vace_context]
|
|
c = [u.flatten(2).transpose(1, 2) for u in c]
|
|
c = torch.cat([
|
|
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
|
|
dim=1) for u in c
|
|
])
|
|
|
|
if x.shape[1] > c.shape[1]:
|
|
c = torch.cat([c.new_zeros(x.shape[0], x.shape[1] - c.shape[1], c.shape[2]), c], dim=1)
|
|
if c.shape[1] > x.shape[1]:
|
|
c = c[:, :x.shape[1]]
|
|
|
|
hints = []
|
|
current_c = c
|
|
vace_swap_start_idx = len(self.vace_blocks) - self.vace_blocks_to_swap if self.vace_blocks_to_swap > 0 else len(self.vace_blocks)
|
|
|
|
for b, block in enumerate(self.vace_blocks):
|
|
if b >= vace_swap_start_idx and self.vace_blocks_to_swap > 0:
|
|
block.to(self.main_device)
|
|
|
|
if b == 0:
|
|
c_processed = block.before_proj(current_c) + x
|
|
else:
|
|
c_processed = current_c
|
|
|
|
c_processed = block.forward(c_processed, **kwargs)[0]
|
|
|
|
# Store skip connection
|
|
c_skip = block.after_proj(c_processed)
|
|
hints.append(c_skip.to(
|
|
self.offload_device if self.vace_blocks_to_swap > 0 else self.main_device,
|
|
non_blocking=self.use_non_blocking
|
|
))
|
|
|
|
current_c = c_processed
|
|
|
|
if b >= vace_swap_start_idx and self.vace_blocks_to_swap > 0:
|
|
block.to(self.offload_device, non_blocking=self.use_non_blocking)
|
|
|
|
return hints
|
|
|
|
def audio_injector_forward(self, block_idx, x, audio_emb, scale=1.0):
|
|
if block_idx in self.audio_injector.injected_block_id.keys():
|
|
audio_attn_id = self.audio_injector.injected_block_id[block_idx]
|
|
num_frames = audio_emb.shape[1]# b f n c
|
|
|
|
input_x = x[:, :self.original_seq_len].clone() # b (f h w) c
|
|
input_x = rearrange(input_x, "b (t n) c -> (b t) n c", t=num_frames)
|
|
|
|
if self.enable_adain and self.adain_mode == "attn_norm":
|
|
audio_emb_global = self.audio_emb_global
|
|
audio_emb_global = rearrange(audio_emb_global,"b t n c -> (b t) n c")
|
|
attn_x = self.audio_injector.injector_adain_layers[audio_attn_id](input_x, temb=audio_emb_global[:, 0])
|
|
else:
|
|
attn_x = self.audio_injector.injector_pre_norm_feat[audio_attn_id](input_x)
|
|
|
|
attn_audio_emb = rearrange(audio_emb, "b t n c -> (b t) n c", t=num_frames)
|
|
residual_out = self.audio_injector.injector[audio_attn_id](
|
|
x=attn_x ,
|
|
context=attn_audio_emb * scale,
|
|
)
|
|
residual_out = rearrange(residual_out, "(b t) n c -> b (t n) c", t=num_frames)
|
|
x[:, :self.original_seq_len].add_(residual_out)
|
|
|
|
return x
|
|
|
|
def wananimate_pose_embedding(self, x, pose_latents, strength=1.0):
|
|
pose_latents = [self.pose_patch_embedding(u.unsqueeze(0).to(torch.float32)).to(x[0].dtype) for u in pose_latents]
|
|
for x_, pose_latents_ in zip(x, pose_latents):
|
|
x_[:, :, 1:].add_(pose_latents_, alpha=strength)
|
|
return x
|
|
|
|
|
|
def wananimate_face_embedding(self, face_pixel_values):
|
|
b,c,T,h,w = face_pixel_values.shape
|
|
face_pixel_values = rearrange(face_pixel_values, "b c t h w -> (b t) c h w")
|
|
|
|
encode_bs = 8
|
|
face_pixel_values_tmp = []
|
|
self.motion_encoder.to(self.main_device)
|
|
for i in range(math.ceil(face_pixel_values.shape[0]/encode_bs)):
|
|
face_pixel_values_tmp.append(self.motion_encoder(face_pixel_values[i*encode_bs:(i+1)*encode_bs]))
|
|
del face_pixel_values
|
|
self.motion_encoder.to(self.offload_device)
|
|
|
|
motion_vec = rearrange(torch.cat(face_pixel_values_tmp), "(b t) c -> b t c", t=T)
|
|
del face_pixel_values_tmp
|
|
self.face_encoder.to(self.main_device)
|
|
motion_vec = self.face_encoder(motion_vec.to(self.face_encoder.dtype))
|
|
self.face_encoder.to(self.offload_device)
|
|
|
|
B, L, H, C = motion_vec.shape
|
|
pad_face = torch.zeros(B, 1, H, C, device=motion_vec.device, dtype=motion_vec.dtype)
|
|
return torch.cat([pad_face, motion_vec], dim=1)
|
|
|
|
|
|
def wananimate_forward(self, block, x, motion_vec, strength=1.0, motion_masks=None):
|
|
adapter_args = [x, motion_vec, motion_masks]
|
|
residual_out = block.fuser_block(*adapter_args)
|
|
return x.add(residual_out, alpha=strength)
|
|
|
|
|
|
def rope_encode_comfy(self, t, h, w, freq_offset=0, t_start=0, attn_cond_shape=None, steps_t=None, steps_h=None, steps_w=None, ntk_alphas=[1,1,1], device=None, dtype=None):
|
|
patch_size = self.patch_size
|
|
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
|
|
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
|
|
w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
|
|
|
|
if steps_t is None:
|
|
steps_t = t_len
|
|
if steps_h is None:
|
|
steps_h = h_len
|
|
if steps_w is None:
|
|
steps_w = w_len
|
|
|
|
img_ids = torch.zeros((steps_t, steps_h, steps_w, 3), device=device, dtype=dtype)
|
|
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(t_start+freq_offset, t_start + (t_len - 1), steps=steps_t, device=device, dtype=dtype).reshape(-1, 1, 1)
|
|
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(freq_offset, h_len - 1, steps=steps_h, device=device, dtype=dtype).reshape(1, -1, 1)
|
|
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(freq_offset, w_len - 1, steps=steps_w, device=device, dtype=dtype).reshape(1, 1, -1)
|
|
img_ids = img_ids.reshape(1, -1, img_ids.shape[-1])
|
|
if attn_cond_shape is not None:
|
|
F_cond, H_cond, W_cond = attn_cond_shape[2], attn_cond_shape[3], attn_cond_shape[4]
|
|
cond_f_len = ((F_cond + (self.patch_size[0] // 2)) // self.patch_size[0])
|
|
cond_h_len = ((H_cond + (self.patch_size[1] // 2)) // self.patch_size[1])
|
|
cond_w_len = ((W_cond + (self.patch_size[2] // 2)) // self.patch_size[2])
|
|
cond_img_ids = torch.zeros((cond_f_len, cond_h_len, cond_w_len, 3), device=device, dtype=dtype)
|
|
|
|
#shift
|
|
shift_f_size = 81 # Default value
|
|
shift_f = False
|
|
if shift_f:
|
|
cond_img_ids[:, :, :, 0] = cond_img_ids[:, :, :, 0] + torch.linspace(shift_f_size, shift_f_size + cond_f_len - 1,steps=cond_f_len, device=device, dtype=dtype).reshape(-1, 1, 1)
|
|
else:
|
|
cond_img_ids[:, :, :, 0] = cond_img_ids[:, :, :, 0] + torch.linspace(0, cond_f_len - 1, steps=cond_f_len, device=device, dtype=dtype).reshape(-1, 1, 1)
|
|
cond_img_ids[:, :, :, 1] = cond_img_ids[:, :, :, 1] + torch.linspace(h_len, h_len + cond_h_len - 1, steps=cond_h_len, device=device, dtype=dtype).reshape(1, -1, 1)
|
|
cond_img_ids[:, :, :, 2] = cond_img_ids[:, :, :, 2] + torch.linspace(w_len, w_len + cond_w_len - 1, steps=cond_w_len, device=device, dtype=dtype).reshape(1, 1, -1)
|
|
|
|
# Combine original and conditional position ids
|
|
#img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=1)
|
|
#cond_img_ids = repeat(cond_img_ids, "t h w c -> b (t h w) c", b=1)
|
|
cond_img_ids = cond_img_ids.reshape(1, -1, cond_img_ids.shape[-1])
|
|
combined_img_ids = torch.cat([img_ids, cond_img_ids], dim=1)
|
|
|
|
# Generate RoPE frequencies for the combined positions
|
|
freqs = self.rope_embedder(combined_img_ids, ntk_alphas).movedim(1, 2)
|
|
else:
|
|
freqs = self.rope_embedder(img_ids, ntk_alphas).movedim(1, 2)
|
|
return freqs
|
|
|
|
def forward(
|
|
self, x, t, context, seq_len,
|
|
is_uncond=False,
|
|
current_step_percentage=0.0, current_step=0, last_step=0, total_steps=50,
|
|
clip_fea=None,
|
|
y=None,
|
|
device=torch.device('cuda'),
|
|
freqs=None,
|
|
enhance_enabled=False,
|
|
pred_id=None,
|
|
control_lora_enabled=False,
|
|
vace_data=None,
|
|
camera_embed=None,
|
|
unianim_data=None,
|
|
fps_embeds=None,
|
|
fun_ref=None, fun_camera=None,
|
|
audio_proj=None, audio_scale=1.0,
|
|
uni3c_data=None,
|
|
controlnet=None,
|
|
add_cond=None, attn_cond=None,
|
|
nag_params={}, nag_context=None,
|
|
multitalk_audio=None,
|
|
ref_target_masks=None,
|
|
inner_t=None,
|
|
standin_input=None,
|
|
fantasy_portrait_input=None,
|
|
phantom_ref=None,
|
|
reverse_time=False,
|
|
ntk_alphas = [1.0, 1.0, 1.0],
|
|
mtv_motion_tokens=None, mtv_motion_rotary_emb=None,
|
|
mtv_freqs=None, mtv_strength=1.0,
|
|
s2v_audio_input=None, s2v_ref_latent=None, s2v_audio_scale=1.0,
|
|
s2v_ref_motion=None, s2v_pose=None, s2v_motion_frames=[1, 0],
|
|
humo_audio=None, humo_audio_scale=1.0,
|
|
wananim_pose_latents=None, wananim_face_pixel_values=None,
|
|
wananim_pose_strength=1.0, wananim_face_strength=1.0,
|
|
lynx_embeds=None,
|
|
x_ovi=None, seq_len_ovi=None, ovi_negative_text_embeds=None,
|
|
flashvsr_LQ_latent=None, flashvsr_strength=1.0,
|
|
num_cond_latents=None,
|
|
add_text_emb=None,
|
|
):
|
|
r"""
|
|
Forward pass through the diffusion model
|
|
|
|
Args:
|
|
x (List[Tensor]):
|
|
List of input video tensors, each with shape [C_in, F, H, W]
|
|
t (Tensor):
|
|
Diffusion timesteps tensor of shape [B]
|
|
context (List[Tensor]):
|
|
List of text embeddings each with shape [L, C]
|
|
seq_len (`int`):
|
|
Maximum sequence length for positional encoding
|
|
clip_fea (Tensor, *optional*):
|
|
CLIP image features for image-to-video mode
|
|
y (List[Tensor], *optional*):
|
|
Conditional video inputs for image-to-video mode, same shape as x
|
|
|
|
Returns:
|
|
List[Tensor]:
|
|
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
|
|
"""
|
|
# Stand-In only used on first positive pass, then cached in kv_cache
|
|
if is_uncond or current_step > 0:
|
|
standin_input = None
|
|
|
|
# MTV Crafter motion projection
|
|
if mtv_motion_tokens is not None:
|
|
bs, motion_seq_len = mtv_motion_tokens.shape[0], mtv_motion_tokens.shape[1]
|
|
mtv_motion_tokens = torch.cat([mtv_motion_tokens, self.pad_motion_tokens.to(mtv_motion_tokens).expand(bs, motion_seq_len, -1)], dim=-1)
|
|
|
|
# Fantasy Portrait
|
|
adapter_proj = ip_scale = None
|
|
if fantasy_portrait_input is not None:
|
|
if fantasy_portrait_input['start_percent'] <= current_step_percentage <= fantasy_portrait_input['end_percent']:
|
|
adapter_proj = fantasy_portrait_input.get("adapter_proj", None)
|
|
ip_scale = fantasy_portrait_input.get("strength", 1.0)
|
|
|
|
if self.lora_scheduling_enabled:
|
|
for name, submodule in self.named_modules():
|
|
if isinstance(submodule, nn.Linear):
|
|
if hasattr(submodule, 'step'):
|
|
submodule.step = current_step
|
|
|
|
# lynx
|
|
lynx_x_ip = lynx_ref_feature = lynx_ref_buffer = lynx_ref_feature_extractor = None
|
|
lynx_ip_scale = lynx_ref_scale = 1.0
|
|
if lynx_embeds is not None:
|
|
lynx_ref_feature_extractor = lynx_embeds.get("ref_feature_extractor", False)
|
|
lynx_ref_blocks_to_use = lynx_embeds.get("ref_blocks_to_use", None)
|
|
if lynx_ref_blocks_to_use is None:
|
|
lynx_ref_blocks_to_use = list(range(len(self.blocks)))
|
|
if (lynx_embeds['start_percent'] <= current_step_percentage <= lynx_embeds['end_percent']) and not lynx_ref_feature_extractor:
|
|
if not is_uncond:
|
|
lynx_x_ip = lynx_embeds.get("ip_x", None)
|
|
lynx_ref_buffer = lynx_embeds.get("ref_buffer", None)
|
|
else:
|
|
lynx_x_ip = lynx_embeds.get("ip_x_uncond", None)
|
|
lynx_ref_buffer = lynx_embeds.get("ref_buffer_uncond", None)
|
|
lynx_x_ip = lynx_x_ip.to(self.main_device) if lynx_x_ip is not None else None
|
|
|
|
lynx_ip_scale = lynx_embeds.get("ip_scale", 1.0)
|
|
lynx_ref_scale = lynx_embeds.get("ref_scale", 1.0)
|
|
|
|
|
|
#s2v
|
|
if self.model_type == 's2v' and s2v_audio_input is not None:
|
|
if is_uncond:
|
|
s2v_audio_input = s2v_audio_input * 0 # to match original code
|
|
s2v_audio_input = torch.cat([s2v_audio_input[..., 0:1].repeat(1, 1, 1, s2v_motion_frames[0]), s2v_audio_input], dim=-1)
|
|
|
|
audio_emb_res = self.casual_audio_encoder(s2v_audio_input)
|
|
if self.enable_adain:
|
|
audio_emb_global, audio_emb = audio_emb_res
|
|
self.audio_emb_global = audio_emb_global[:, s2v_motion_frames[1]:].clone()
|
|
else:
|
|
audio_emb = audio_emb_res
|
|
merged_audio_emb = audio_emb[:, s2v_motion_frames[1]:, :]
|
|
|
|
# params
|
|
device = self.main_device
|
|
|
|
if freqs is not None and freqs.device != device:
|
|
freqs = freqs.to(device)
|
|
|
|
_, F, H, W = x[0].shape
|
|
|
|
if y is not None:
|
|
if hasattr(self, "randomref_embedding_pose") and unianim_data is not None:
|
|
if unianim_data['start_percent'] <= current_step_percentage <= unianim_data['end_percent']:
|
|
random_ref_emb = unianim_data["random_ref"]
|
|
if random_ref_emb is not None:
|
|
y[0].add_(random_ref_emb, alpha=unianim_data["strength"])
|
|
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
|
|
|
#uni3c controlnet
|
|
if uni3c_data is not None:
|
|
render_latent = uni3c_data["render_latent"].to(self.base_dtype)
|
|
hidden_states = x[0].unsqueeze(0).clone().float()
|
|
if hidden_states.shape[1] == 16: #T2V work around
|
|
hidden_states = torch.cat([hidden_states, torch.zeros_like(hidden_states[:, :4])], dim=1)
|
|
render_latent = torch.cat([hidden_states[:, :20], render_latent], dim=1)
|
|
|
|
# patch embed
|
|
if control_lora_enabled:
|
|
self.expanded_patch_embedding.to(self.main_device)
|
|
x = [self.expanded_patch_embedding(u.unsqueeze(0).to(torch.float32)).to(x[0].dtype) for u in x]
|
|
else:
|
|
self.original_patch_embedding.to(self.main_device)
|
|
x = [self.original_patch_embedding(u.unsqueeze(0).to(torch.float32)).to(x[0].dtype) for u in x]
|
|
|
|
# ovi audio model
|
|
if self.audio_model is not None:
|
|
x_ovi = [self.audio_model.original_patch_embedding(u.unsqueeze(0).to(torch.float32)).to(x_ovi[0].dtype) for u in x_ovi]
|
|
grid_sizes_ovi = torch.stack([torch.tensor(u.shape[1:2], dtype=torch.long) for u in x_ovi])
|
|
seq_lens_ovi = torch.tensor([u.size(1) for u in x_ovi], dtype=torch.int32)
|
|
x_ovi = torch.cat([torch.cat([u, u.new_zeros(1, seq_len_ovi - u.size(1), u.size(2))], dim=1) for u in x_ovi])
|
|
d = self.dim // self.num_heads
|
|
freqs_ovi = rope_params(1024, d - 4 * (d // 6), freqs_scaling=0.19676).to(self.main_device)
|
|
x_ovi = x_ovi.to(self.main_device, self.base_dtype)
|
|
|
|
# WanAnimate
|
|
motion_vec = None
|
|
if wananim_face_pixel_values is not None:
|
|
motion_vec = self.wananimate_face_embedding(wananim_face_pixel_values).to(self.base_dtype)
|
|
|
|
if wananim_pose_latents is not None:
|
|
x = self.wananimate_pose_embedding(x, wananim_pose_latents, strength=wananim_pose_strength)
|
|
|
|
# s2v pose embedding
|
|
if s2v_pose is not None:
|
|
x[0] = x[0] + self.cond_encoder(s2v_pose.to(self.cond_encoder.weight.dtype)).to(self.base_dtype)
|
|
|
|
# Fun camera
|
|
if self.control_adapter is not None and fun_camera is not None:
|
|
fun_camera = self.control_adapter(fun_camera)
|
|
x = [u + v for u, v in zip(x, fun_camera)]
|
|
|
|
# grid sizes and seq len
|
|
grid_sizes = torch.stack([torch.tensor(u.shape[2:], device=device, dtype=torch.long) for u in x])
|
|
original_grid_sizes = grid_sizes.clone()
|
|
x = [u.flatten(2).transpose(1, 2) for u in x]
|
|
self.original_seq_len = x[0].shape[1]
|
|
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.int32)
|
|
assert seq_lens.max() <= seq_len
|
|
|
|
cond_mask_weight = None
|
|
if self.trainable_cond_mask is not None:
|
|
cond_mask_weight = self.trainable_cond_mask.weight.to(x[0]).unsqueeze(1).unsqueeze(1)
|
|
|
|
if add_cond is not None:
|
|
add_cond = self.add_conv_in(add_cond.to(self.add_conv_in.weight.dtype)).to(x[0].dtype)
|
|
add_cond = add_cond.flatten(2).transpose(1, 2)
|
|
x[0] = x[0] + self.add_proj(add_cond)
|
|
attn_cond_shape = None
|
|
if attn_cond is not None:
|
|
attn_cond_shape = attn_cond.shape
|
|
grid_sizes = torch.stack([torch.tensor([u[0] + 1, u[1], u[2]]) for u in grid_sizes]).to(grid_sizes.device)
|
|
attn_cond = self.attn_conv_in(attn_cond.to(self.attn_conv_in.weight.dtype)).to(x[0].dtype)
|
|
attn_cond = attn_cond.flatten(2).transpose(1, 2)
|
|
x[0] = torch.cat([x[0], attn_cond], dim=1)
|
|
seq_len += attn_cond.size(1)
|
|
for block in self.blocks:
|
|
block.self_attn.mask_map = MaskMap(video_token_num=seq_len, num_frame=F+1)
|
|
|
|
if self.ref_conv is not None and fun_ref is not None:
|
|
fun_ref = self.ref_conv(fun_ref.to(self.ref_conv.weight.dtype)).flatten(2).transpose(1, 2)
|
|
grid_sizes = torch.stack([torch.tensor([u[0] + 1, u[1], u[2]]) for u in grid_sizes]).to(grid_sizes.device)
|
|
seq_len += fun_ref.size(1)
|
|
F += 1
|
|
x = [torch.cat([_fun_ref.unsqueeze(0), u], dim=1) for _fun_ref, u in zip(fun_ref, x)]
|
|
|
|
end_ref_latent=None
|
|
if s2v_ref_latent is not None:
|
|
end_ref_latent = s2v_ref_latent.squeeze(0)
|
|
elif phantom_ref is not None:
|
|
end_ref_latent = phantom_ref
|
|
F += end_ref_latent.size(1)
|
|
if end_ref_latent is not None:
|
|
end_ref_latent_frames = end_ref_latent.size(1)
|
|
end_ref_latent = self.original_patch_embedding(end_ref_latent.unsqueeze(0).to(torch.float32)).to(x[0].dtype)
|
|
end_ref_latent = end_ref_latent.flatten(2).transpose(1, 2)
|
|
if cond_mask_weight is not None:
|
|
end_ref_latent = end_ref_latent + cond_mask_weight[1]
|
|
grid_sizes = torch.stack([torch.tensor([u[0] + end_ref_latent_frames, u[1], u[2]]) for u in grid_sizes]).to(grid_sizes.device)
|
|
end_ref_latent_seq_len = end_ref_latent.size(1)
|
|
seq_len += end_ref_latent_seq_len
|
|
x = [torch.cat([u, end_ref_latent.unsqueeze(0)], dim=1) for end_ref_latent, u in zip(end_ref_latent, x)]
|
|
|
|
|
|
x = torch.cat([torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1) for u in x])
|
|
|
|
if self.trainable_cond_mask is not None:
|
|
x = x + cond_mask_weight[0]
|
|
|
|
# StandIn LoRA input
|
|
x_ip = None
|
|
freq_offset = 0
|
|
if standin_input is not None:
|
|
ip_image = standin_input["ip_image_latent"]
|
|
|
|
if ip_image.dim() == 6 and ip_image.shape[3] == 1:
|
|
ip_image = ip_image.squeeze(1)
|
|
|
|
ip_image_patch = self.original_patch_embedding(ip_image.float()).to(self.base_dtype)
|
|
f_ip, h_ip, w_ip = ip_image_patch.shape[2:]
|
|
x_ip = ip_image_patch.flatten(2).transpose(1, 2) # [B, N, D]
|
|
freq_offset = standin_input["freq_offset"]
|
|
|
|
if freqs is None and "comfy" in self.rope_func: #comfy rope
|
|
current_shape = (F, H, W)
|
|
|
|
has_cond = attn_cond is not None
|
|
|
|
if (self.cached_freqs is not None and
|
|
self.cached_shape == current_shape and
|
|
self.cached_cond == has_cond and
|
|
self.cached_rope_k == self.rope_embedder.k and
|
|
self.cached_ntk_alphas == ntk_alphas
|
|
):
|
|
freqs = self.cached_freqs
|
|
else:
|
|
freqs = self.rope_encode_comfy(F, H, W, freq_offset=freq_offset, ntk_alphas=ntk_alphas, attn_cond_shape=attn_cond_shape, device=x.device, dtype=x.dtype)
|
|
if s2v_ref_latent is not None:
|
|
freqs_ref = self.rope_encode_comfy(
|
|
s2v_ref_latent.shape[2],
|
|
s2v_ref_latent.shape[3],
|
|
s2v_ref_latent.shape[4],
|
|
t_start=max(30, F + 9), device=x.device, dtype=x.dtype)
|
|
freqs = torch.cat([freqs, freqs_ref], dim=1)
|
|
|
|
self.cached_freqs = freqs
|
|
self.cached_shape = current_shape
|
|
self.cached_cond = has_cond
|
|
self.cached_rope_k = self.rope_embedder.k
|
|
self.cached_ntk_alphas = ntk_alphas
|
|
|
|
# Stand-In RoPE frequencies
|
|
if x_ip is not None:
|
|
# Generate RoPE frequencies for x_ip
|
|
h_len = (H + 1) // 2
|
|
w_len = (W + 1) // 2
|
|
ip_img_ids = torch.zeros((f_ip, h_ip, w_ip, 3), device=x.device, dtype=x.dtype)
|
|
ip_img_ids[:, :, :, 0] = ip_img_ids[:, :, :, 0] + torch.linspace(0, f_ip - 1, steps=f_ip, device=x.device, dtype=x.dtype).reshape(-1, 1, 1)
|
|
ip_img_ids[:, :, :, 1] = ip_img_ids[:, :, :, 1] + torch.linspace(h_len + freq_offset, h_len + freq_offset + h_ip - 1, steps=h_ip, device=x.device, dtype=x.dtype).reshape(1, -1, 1)
|
|
ip_img_ids[:, :, :, 2] = ip_img_ids[:, :, :, 2] + torch.linspace(w_len + freq_offset, w_len + freq_offset + w_ip - 1, steps=w_ip, device=x.device, dtype=x.dtype).reshape(1, 1, -1)
|
|
ip_img_ids = repeat(ip_img_ids, "t h w c -> b (t h w) c", b=1)
|
|
freqs_ip = self.rope_embedder(ip_img_ids).movedim(1, 2)
|
|
|
|
# EchoShot cross attn freqs
|
|
inner_c = None
|
|
if inner_t is not None:
|
|
d = self.dim // self.num_heads
|
|
self.cross_freqs = rope_params(100, d).to(device=x.device)
|
|
|
|
if s2v_ref_motion is not None:
|
|
motion_encoded, freqs_motion = self.frame_packer(s2v_ref_motion, self)
|
|
motion_encoded = motion_encoded + cond_mask_weight[2]
|
|
x = torch.cat([x, motion_encoded], dim=1)
|
|
freqs = torch.cat([freqs, freqs_motion], dim=1)
|
|
|
|
# time embeddings
|
|
if t.dim() == 2 and not self.is_longcat:
|
|
b, f = t.shape
|
|
expanded_timesteps = True
|
|
else:
|
|
expanded_timesteps = False
|
|
|
|
if self.zero_timestep:
|
|
t = torch.cat([t, torch.zeros([1], dtype=t.dtype, device=t.device)])
|
|
|
|
if hasattr(self, "time_projection"):
|
|
time_embed_dtype = self.time_embedding[0].weight.dtype
|
|
if time_embed_dtype not in [torch.float16, torch.bfloat16, torch.float32]:
|
|
time_embed_dtype = self.base_dtype
|
|
e = self.time_embedding(sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(time_embed_dtype)) # b, dim
|
|
e0 = self.time_projection(e).unflatten(1, (6, self.dim)) # b, 6, dim
|
|
else:
|
|
time_embed_dtype = self.time_embedding.mlp[0].weight.dtype
|
|
if time_embed_dtype not in [torch.float16, torch.bfloat16, torch.float32]:
|
|
time_embed_dtype = self.base_dtype
|
|
if len(t.shape) == 1:
|
|
t = t.unsqueeze(1).expand(-1, F) # [B, T]
|
|
self.time_embedding.to(torch.float32)
|
|
e = e0 = self.time_embedding(t.float().flatten(), dtype=torch.float32).reshape(1, F, -1)
|
|
|
|
|
|
if self.audio_model is not None:
|
|
#if t.dim() == 1:
|
|
# t_ovi = t.unsqueeze(1).expand(t.size(0), seq_len_ovi)
|
|
if t.dim() == 2:
|
|
last_timestep = t[:, -1:]
|
|
padding = last_timestep.expand(t.size(0), seq_len_ovi - t.size(1))
|
|
t_ovi = torch.cat([t, padding], dim=1)
|
|
|
|
e_ovi = self.audio_model.time_embedding(sinusoidal_embedding_1d(self.audio_model.freq_dim, t_ovi.flatten()).to(time_embed_dtype)).unsqueeze(0) # b, dim
|
|
e0_ovi = self.audio_model.time_projection(e_ovi).unflatten(2, (6, self.dim)).movedim(1, 2) # B, seq_len, 6, dim
|
|
else:
|
|
e_ovi = self.audio_model.time_embedding(sinusoidal_embedding_1d(self.audio_model.freq_dim, t.flatten()).to(time_embed_dtype)) # b, dim
|
|
e0_ovi = self.audio_model.time_projection(e_ovi).unflatten(1, (6, self.dim)) # b, 6, dim
|
|
|
|
|
|
#S2V zero timestep
|
|
if self.zero_timestep:
|
|
e = e[:-1]
|
|
zero_e0 = e0[-1:]
|
|
e0 = e0[:-1]
|
|
e0 = torch.cat([
|
|
e0.unsqueeze(2),
|
|
zero_e0.unsqueeze(2).repeat(e0.size(0), 1, 1, 1)
|
|
], dim=2)
|
|
e0 = [e0, self.original_seq_len]
|
|
|
|
if x_ip is not None:
|
|
timestep_ip = torch.zeros_like(t) # [B] with 0s
|
|
t_ip = self.time_embedding(sinusoidal_embedding_1d(self.freq_dim, timestep_ip.flatten()).to(time_embed_dtype)) # b, dim )
|
|
e0_ip = self.time_projection(t_ip).unflatten(1, (6, self.dim))
|
|
|
|
if fps_embeds is not None:
|
|
fps_embeds = torch.tensor(fps_embeds, dtype=torch.long, device=device)
|
|
|
|
fps_emb = self.fps_embedding(fps_embeds).to(e0.dtype)
|
|
if expanded_timesteps:
|
|
e0 = e0 + self.fps_projection(fps_emb).unflatten(1, (6, self.dim)).repeat(t.shape[1], 1, 1)
|
|
else:
|
|
e0 = e0 + self.fps_projection(fps_emb).unflatten(1, (6, self.dim))
|
|
|
|
if expanded_timesteps:
|
|
e = e.view(b, f, 1, 1, self.dim).expand(b, f, grid_sizes[0][1], grid_sizes[0][2], self.dim)
|
|
e0 = e0.view(b, f, 1, 1, 6, self.dim).expand(b, f, grid_sizes[0][1], grid_sizes[0][2], 6, self.dim)
|
|
|
|
e = e.flatten(1, 3)
|
|
e0 = e0.flatten(1, 3)
|
|
|
|
e0 = e0.transpose(1, 2)
|
|
if not e0.is_contiguous():
|
|
e0 = e0.contiguous()
|
|
|
|
e = e.to(self.offload_device, non_blocking=self.use_non_blocking)
|
|
|
|
# clip vision embedding
|
|
clip_embed = None
|
|
if clip_fea is not None and hasattr(self, "img_emb"):
|
|
clip_fea = clip_fea.to(self.main_device)
|
|
if self.offload_img_emb:
|
|
self.img_emb.to(self.main_device)
|
|
clip_embed = self.img_emb(clip_fea) # bs x 257 x dim
|
|
#context = torch.concat([context_clip, context], dim=1)
|
|
if self.offload_img_emb:
|
|
self.img_emb.to(self.offload_device, non_blocking=self.use_non_blocking)
|
|
|
|
#context (text embedding)
|
|
if hasattr(self, "text_embedding") and context != []:
|
|
text_embed_dtype = self.text_embedding[0].weight.dtype
|
|
if text_embed_dtype not in [torch.float16, torch.bfloat16, torch.float32]:
|
|
text_embed_dtype = self.base_dtype
|
|
if self.offload_txt_emb:
|
|
self.text_embedding.to(self.main_device)
|
|
|
|
if inner_t is not None:
|
|
if nag_context is not None:
|
|
raise NotImplementedError("nag_context is not supported with EchoShot")
|
|
inner_c = [[u.shape[0] for u in context]]
|
|
|
|
if self.audio_model is not None:
|
|
if is_uncond and ovi_negative_text_embeds is not None:
|
|
context_ovi = ovi_negative_text_embeds
|
|
else:
|
|
context_ovi = context
|
|
context_ovi = self.audio_model.text_embedding(
|
|
torch.stack([torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) for u in context_ovi]).to(text_embed_dtype))
|
|
|
|
tokens = context[0].shape[0]
|
|
context = torch.stack([torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) for u in context]).to(text_embed_dtype)
|
|
|
|
if add_text_emb is not None:
|
|
self.text_projection.to(self.main_device)
|
|
add_text_emb = self.text_projection(add_text_emb.to(self.text_projection[0].weight.dtype)).to(text_embed_dtype)
|
|
context = torch.cat([add_text_emb, context], dim=1)
|
|
context = self.text_embedding(context)
|
|
|
|
if self.is_longcat:
|
|
context[:, tokens:] = 0
|
|
|
|
# NAG
|
|
if nag_context is not None:
|
|
nag_context = self.text_embedding(
|
|
torch.stack([
|
|
torch.cat(
|
|
[u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
|
|
for u in nag_context
|
|
]).to(text_embed_dtype))
|
|
|
|
if self.offload_txt_emb:
|
|
self.text_embedding.to(self.offload_device, non_blocking=self.use_non_blocking)
|
|
|
|
seq_chunks = max(context.shape[0], clip_embed.shape[0] if clip_embed is not None else 0)
|
|
chunked_self_attention = seq_chunks > 1 and current_step in self.video_attention_split_steps
|
|
else:
|
|
context = None
|
|
chunked_self_attention = False
|
|
seq_chunks = 0
|
|
|
|
# MultiTalk
|
|
if multitalk_audio is not None:
|
|
self.multitalk_audio_proj.to(self.main_device)
|
|
audio_cond = multitalk_audio.to(device=x.device, dtype=self.base_dtype)
|
|
first_frame_audio_emb_s = audio_cond[:, :1, ...]
|
|
latter_frame_audio_emb = audio_cond[:, 1:, ...]
|
|
latter_frame_audio_emb = rearrange(latter_frame_audio_emb, "b (n_t n) w s c -> b n_t n w s c", n=4)
|
|
middle_index = self.multitalk_audio_proj.seq_len // 2
|
|
latter_first_frame_audio_emb = latter_frame_audio_emb[:, :, :1, :middle_index+1, ...]
|
|
latter_first_frame_audio_emb = rearrange(latter_first_frame_audio_emb, "b n_t n w s c -> b n_t (n w) s c")
|
|
latter_last_frame_audio_emb = latter_frame_audio_emb[:, :, -1:, middle_index:, ...]
|
|
latter_last_frame_audio_emb = rearrange(latter_last_frame_audio_emb, "b n_t n w s c -> b n_t (n w) s c")
|
|
latter_middle_frame_audio_emb = latter_frame_audio_emb[:, :, 1:-1, middle_index:middle_index+1, ...]
|
|
latter_middle_frame_audio_emb = rearrange(latter_middle_frame_audio_emb, "b n_t n w s c -> b n_t (n w) s c")
|
|
latter_frame_audio_emb_s = torch.concat([latter_first_frame_audio_emb, latter_middle_frame_audio_emb, latter_last_frame_audio_emb], dim=2)
|
|
multitalk_audio_embedding = self.multitalk_audio_proj(first_frame_audio_emb_s, latter_frame_audio_emb_s)
|
|
human_num = len(multitalk_audio_embedding)
|
|
multitalk_audio_embedding = torch.concat(multitalk_audio_embedding.split(1), dim=2).to(self.base_dtype)
|
|
self.multitalk_audio_proj.to(self.offload_device)
|
|
|
|
# convert ref_target_masks to token_ref_target_masks
|
|
token_ref_target_masks = None
|
|
if ref_target_masks is not None:
|
|
ref_target_masks = ref_target_masks.unsqueeze(0).to(torch.float32)
|
|
token_ref_target_masks = nn.functional.interpolate(ref_target_masks, size=(H // 2, W // 2), mode='nearest')
|
|
token_ref_target_masks = token_ref_target_masks.squeeze(0)
|
|
token_ref_target_masks = (token_ref_target_masks > 0)
|
|
token_ref_target_masks = token_ref_target_masks.view(token_ref_target_masks.shape[0], -1)
|
|
token_ref_target_masks = token_ref_target_masks.to(device, self.base_dtype)
|
|
|
|
humo_audio_input = None
|
|
if humo_audio is not None:
|
|
humo_audio_input = self.audio_proj(humo_audio.unsqueeze(0)).permute(0, 3, 1, 2)
|
|
|
|
humo_audio_seq_len = torch.tensor(humo_audio.shape[2] * humo_audio_input.shape[3], device=device)
|
|
humo_audio_input = humo_audio_input.flatten(2).transpose(1, 2) # 1, t*32, 1536
|
|
pad_len = int(humo_audio_seq_len - humo_audio_input.size(1))
|
|
if pad_len > 0:
|
|
humo_audio_input = torch.nn.functional.pad(humo_audio_input, (0, 0, 0, pad_len))
|
|
|
|
should_calc = True
|
|
#TeaCache
|
|
if self.enable_teacache and self.teacache_start_step <= current_step <= self.teacache_end_step:
|
|
accumulated_rel_l1_distance = torch.tensor(0.0, dtype=torch.float32, device=device)
|
|
if pred_id is None:
|
|
pred_id = self.teacache_state.new_prediction(cache_device=self.cache_device)
|
|
should_calc = True
|
|
else:
|
|
previous_modulated_input = self.teacache_state.get(pred_id)['previous_modulated_input']
|
|
previous_modulated_input = previous_modulated_input.to(device)
|
|
previous_residual = self.teacache_state.get(pred_id)['previous_residual']
|
|
accumulated_rel_l1_distance = self.teacache_state.get(pred_id)['accumulated_rel_l1_distance']
|
|
|
|
if self.teacache_use_coefficients:
|
|
rescale_func = np.poly1d(self.teacache_coefficients[self.teacache_mode])
|
|
temb = e if self.teacache_mode == 'e' else e0
|
|
accumulated_rel_l1_distance += rescale_func((
|
|
(temb.to(device) - previous_modulated_input).abs().mean() / previous_modulated_input.abs().mean()
|
|
).cpu().item())
|
|
del temb
|
|
else:
|
|
temb_relative_l1 = relative_l1_distance(previous_modulated_input, e0)
|
|
accumulated_rel_l1_distance = accumulated_rel_l1_distance.to(e0.device) + temb_relative_l1
|
|
del temb_relative_l1
|
|
|
|
|
|
if accumulated_rel_l1_distance < self.rel_l1_thresh:
|
|
should_calc = False
|
|
else:
|
|
should_calc = True
|
|
accumulated_rel_l1_distance = torch.tensor(0.0, dtype=torch.float32, device=device)
|
|
accumulated_rel_l1_distance = accumulated_rel_l1_distance.to(self.cache_device)
|
|
|
|
previous_modulated_input = e.to(self.cache_device).clone() if (self.teacache_use_coefficients and self.teacache_mode == 'e') else e0.to(self.cache_device).clone()
|
|
|
|
if not should_calc:
|
|
x = x.to(previous_residual.dtype) + previous_residual.to(x.device)
|
|
self.teacache_state.update(
|
|
pred_id,
|
|
accumulated_rel_l1_distance=accumulated_rel_l1_distance,
|
|
)
|
|
self.teacache_state.get(pred_id)['skipped_steps'].append(current_step)
|
|
|
|
# MagCache
|
|
if self.enable_magcache and self.magcache_start_step <= current_step <= self.magcache_end_step:
|
|
if pred_id is None:
|
|
pred_id = self.magcache_state.new_prediction(cache_device=self.cache_device)
|
|
should_calc = True
|
|
else:
|
|
accumulated_ratio = self.magcache_state.get(pred_id)['accumulated_ratio']
|
|
accumulated_err = self.magcache_state.get(pred_id)['accumulated_err']
|
|
accumulated_steps = self.magcache_state.get(pred_id)['accumulated_steps']
|
|
|
|
calibration_len = len(self.magcache_ratios) // 2
|
|
cur_mag_ratio = self.magcache_ratios[int((current_step*(calibration_len/total_steps)))]
|
|
|
|
accumulated_ratio *= cur_mag_ratio
|
|
accumulated_err += np.abs(1-accumulated_ratio)
|
|
accumulated_steps += 1
|
|
|
|
self.magcache_state.update(
|
|
pred_id,
|
|
accumulated_ratio=accumulated_ratio,
|
|
accumulated_steps=accumulated_steps,
|
|
accumulated_err=accumulated_err
|
|
)
|
|
|
|
if accumulated_err<=self.magcache_thresh and accumulated_steps<=self.magcache_K:
|
|
should_calc = False
|
|
x += self.magcache_state.get(pred_id)['residual_cache'].to(x.device)
|
|
self.magcache_state.get(pred_id)['skipped_steps'].append(current_step)
|
|
else:
|
|
should_calc = True
|
|
self.magcache_state.update(
|
|
pred_id,
|
|
accumulated_ratio=1.0,
|
|
accumulated_steps=0,
|
|
accumulated_err=0
|
|
)
|
|
|
|
# EasyCache
|
|
if self.enable_easycache and self.easycache_start_step <= current_step <= self.easycache_end_step:
|
|
if pred_id is None:
|
|
pred_id = self.easycache_state.new_prediction(cache_device=self.cache_device)
|
|
should_calc = True
|
|
else:
|
|
state = self.easycache_state.get(pred_id)
|
|
previous_raw_input = state.get('previous_raw_input')
|
|
previous_raw_output = state.get('previous_raw_output')
|
|
cache = state.get('cache')
|
|
cache_ovi = state.get('cache_ovi') if self.audio_model is not None else None
|
|
accumulated_error = state.get('accumulated_error')
|
|
k = state.get('k', 1)
|
|
|
|
if previous_raw_input is not None and previous_raw_output is not None:
|
|
raw_input = x.clone()
|
|
# Calculate input change
|
|
raw_input_change = (raw_input - previous_raw_input.to(raw_input.device)).abs().mean()
|
|
|
|
output_norm = (previous_raw_output.to(x.device)).abs().mean()
|
|
|
|
combined_pred_change = (raw_input_change / output_norm) * k
|
|
|
|
accumulated_error += combined_pred_change
|
|
|
|
# Predict output change
|
|
if accumulated_error < self.easycache_thresh:
|
|
should_calc = False
|
|
x = raw_input + cache.to(x.device)
|
|
if cache_ovi is not None:
|
|
x_ovi = x_ovi + cache_ovi.to(x_ovi.device)
|
|
state['skipped_steps'].append(current_step)
|
|
else:
|
|
should_calc = True
|
|
else:
|
|
should_calc = True
|
|
|
|
x = x.to(self.base_dtype)
|
|
if isinstance(e0, list):
|
|
e0 = [item.to(self.base_dtype) if torch.is_tensor(item) else item for item in e0]
|
|
else:
|
|
e0 = e0.to(self.base_dtype)
|
|
|
|
if self.enable_easycache:
|
|
original_x = x.clone().to(self.cache_device)
|
|
if x_ovi is not None:
|
|
original_x_ovi = x_ovi.clone().to(self.cache_device)
|
|
if should_calc:
|
|
if self.enable_teacache or self.enable_magcache:
|
|
original_x = x.clone().to(self.cache_device)
|
|
|
|
if hasattr(self, "dwpose_embedding") and unianim_data is not None:
|
|
if unianim_data['start_percent'] <= current_step_percentage <= unianim_data['end_percent']:
|
|
dwpose_emb = rearrange(unianim_data['dwpose'], 'b c f h w -> b (f h w) c').contiguous()
|
|
x.add_(dwpose_emb, alpha=unianim_data['strength'])
|
|
|
|
# arguments
|
|
kwargs = dict(
|
|
e=e0,
|
|
seq_lens=seq_lens,
|
|
grid_sizes=grid_sizes,
|
|
freqs=freqs,
|
|
context=context,
|
|
clip_embed=clip_embed,
|
|
current_step=torch.tensor(current_step),
|
|
last_step=torch.tensor(last_step, dtype=torch.bool),
|
|
chunked_self_attention=chunked_self_attention,
|
|
seq_chunks=seq_chunks,
|
|
camera_embed=camera_embed,
|
|
audio_proj=audio_proj,
|
|
num_latent_frames = F,
|
|
original_seq_len=self.original_seq_len,
|
|
enhance_enabled=enhance_enabled,
|
|
audio_scale=audio_scale,
|
|
nag_params=nag_params, nag_context=nag_context,
|
|
is_uncond = is_uncond,
|
|
multitalk_audio_embedding=multitalk_audio_embedding if multitalk_audio is not None else None,
|
|
ref_target_masks=token_ref_target_masks if multitalk_audio is not None else None,
|
|
human_num=human_num if multitalk_audio is not None else 0,
|
|
inner_t=inner_t, inner_c=inner_c,
|
|
cross_freqs=self.cross_freqs if inner_t is not None else None,
|
|
freqs_ip=freqs_ip if x_ip is not None else None,
|
|
e_ip=e0_ip if x_ip is not None else None,
|
|
adapter_proj=adapter_proj,
|
|
ip_scale=ip_scale,
|
|
reverse_time=reverse_time,
|
|
mtv_motion_tokens=mtv_motion_tokens, mtv_motion_rotary_emb=mtv_motion_rotary_emb, mtv_strength=mtv_strength, mtv_freqs=mtv_freqs,
|
|
humo_audio_input=humo_audio_input,
|
|
humo_audio_scale=humo_audio_scale,
|
|
lynx_x_ip=lynx_x_ip,
|
|
lynx_ip_scale=lynx_ip_scale,
|
|
lynx_ref_scale=lynx_ref_scale,
|
|
num_cond_latents=num_cond_latents
|
|
)
|
|
if self.audio_model is not None:
|
|
kwargs['e_ovi'] = e0_ovi.to(self.base_dtype)
|
|
kwargs['context_ovi'] = context_ovi
|
|
kwargs['grid_sizes_ovi'] = grid_sizes_ovi
|
|
kwargs['seq_lens_ovi'] = seq_lens_ovi
|
|
kwargs['freqs_ovi'] = freqs_ovi
|
|
|
|
|
|
if vace_data is not None:
|
|
vace_hint_list = []
|
|
vace_scale_list = []
|
|
if isinstance(vace_data[0], dict):
|
|
for data in vace_data:
|
|
if (data["start"] <= current_step_percentage <= data["end"]) or \
|
|
(data["end"] > 0 and current_step == 0 and current_step_percentage >= data["start"]):
|
|
|
|
vace_hints = self.forward_vace(x, data["context"], data["seq_len"], kwargs)
|
|
vace_hint_list.append(vace_hints)
|
|
vace_scale_list.append(data["scale"][current_step])
|
|
else:
|
|
vace_hints = self.forward_vace(x, vace_data, seq_len, kwargs)
|
|
vace_hint_list.append(vace_hints)
|
|
vace_scale_list.append(1.0)
|
|
|
|
kwargs['vace_hints'] = vace_hint_list
|
|
kwargs['vace_context_scale'] = vace_scale_list
|
|
|
|
#uni3c controlnet
|
|
uni3c_controlnet_states = None
|
|
if uni3c_data is not None:
|
|
if (uni3c_data["start"] <= current_step_percentage <= uni3c_data["end"]) or \
|
|
(uni3c_data["end"] > 0 and current_step == 0 and current_step_percentage >= uni3c_data["start"]):
|
|
self.controlnet.to(self.main_device)
|
|
with torch.autocast(device_type=mm.get_autocast_device(device), dtype=self.base_dtype, enabled=True):
|
|
uni3c_controlnet_states = self.controlnet(
|
|
render_latent=render_latent.to(self.main_device, self.controlnet.dtype),
|
|
render_mask=uni3c_data["render_mask"],
|
|
camera_embedding=uni3c_data["camera_embedding"],
|
|
temb=e.to(self.main_device),
|
|
device=self.offload_device)
|
|
self.controlnet.to(self.offload_device)
|
|
|
|
# Asynchronous block offloading with CUDA streams and events
|
|
if torch.cuda.is_available():
|
|
cuda_stream = None #torch.cuda.Stream(device=device, priority=0) # todo causes issues on some systems
|
|
events = [torch.cuda.Event() for _ in self.blocks]
|
|
swap_start_idx = len(self.blocks) - self.blocks_to_swap if self.blocks_to_swap > 0 else len(self.blocks)
|
|
else:
|
|
cuda_stream = None
|
|
events = None
|
|
swap_start_idx = len(self.blocks)
|
|
|
|
# lynx ref
|
|
if lynx_ref_buffer is None and lynx_ref_feature_extractor:
|
|
lynx_ref_buffer = {}
|
|
|
|
for b, block in enumerate(self.blocks):
|
|
mm.throw_exception_if_processing_interrupted()
|
|
block_idx = f"{b:02d}"
|
|
if lynx_ref_buffer is not None and not lynx_ref_feature_extractor:
|
|
lynx_ref_feature = lynx_ref_buffer.get(block_idx, None)
|
|
else:
|
|
lynx_ref_feature = None
|
|
# FlashVSR
|
|
if flashvsr_LQ_latent is not None and b < len(flashvsr_LQ_latent):
|
|
x += flashvsr_LQ_latent[b].to(x) * flashvsr_strength
|
|
# Prefetch blocks if enabled
|
|
if self.prefetch_blocks > 0:
|
|
for prefetch_offset in range(1, self.prefetch_blocks + 1):
|
|
prefetch_idx = b + prefetch_offset
|
|
if prefetch_idx < len(self.blocks) and self.blocks_to_swap > 0 and prefetch_idx >= swap_start_idx:
|
|
context_mgr = torch.cuda.stream(cuda_stream) if torch.cuda.is_available() else nullcontext()
|
|
with context_mgr:
|
|
self.blocks[prefetch_idx].to(self.main_device, non_blocking=self.use_non_blocking)
|
|
if events is not None:
|
|
events[prefetch_idx].record(cuda_stream)
|
|
if self.block_swap_debug:
|
|
transfer_start = time.perf_counter()
|
|
# Wait for block to be ready
|
|
if b >= swap_start_idx and self.blocks_to_swap > 0:
|
|
if self.prefetch_blocks > 0 and events is not None:
|
|
if not events[b].query():
|
|
events[b].synchronize()
|
|
block.to(self.main_device)
|
|
if self.block_swap_debug:
|
|
transfer_end = time.perf_counter()
|
|
transfer_time = transfer_end - transfer_start
|
|
compute_start = time.perf_counter()
|
|
#skip layer guidance
|
|
if self.slg_blocks is not None:
|
|
if b in self.slg_blocks and is_uncond:
|
|
if self.slg_start_percent <= current_step_percentage <= self.slg_end_percent:
|
|
continue
|
|
x, x_ip, lynx_ref_feature, x_ovi = block(x, x_ip=x_ip, lynx_ref_feature=lynx_ref_feature, x_ovi=x_ovi, **kwargs) #run block
|
|
if self.audio_injector is not None and s2v_audio_input is not None:
|
|
x = self.audio_injector_forward(b, x, merged_audio_emb, scale=s2v_audio_scale) #s2v
|
|
if block.has_face_fuser_block and motion_vec is not None:
|
|
x = self.wananimate_forward(block, x, motion_vec, strength=wananim_face_strength)
|
|
if self.block_swap_debug:
|
|
compute_end = time.perf_counter()
|
|
compute_time = compute_end - compute_start
|
|
to_cpu_transfer_start = time.perf_counter()
|
|
if b >= swap_start_idx and self.blocks_to_swap > 0:
|
|
block.to(self.offload_device, non_blocking=self.use_non_blocking)
|
|
if self.block_swap_debug:
|
|
to_cpu_transfer_end = time.perf_counter()
|
|
to_cpu_transfer_time = to_cpu_transfer_end - to_cpu_transfer_start
|
|
log.info(f"Block {b}: transfer_time={transfer_time:.4f}s, compute_time={compute_time:.4f}s, to_cpu_transfer_time={to_cpu_transfer_time:.4f}s")
|
|
# lynx ref
|
|
if lynx_ref_feature_extractor:
|
|
if b in lynx_ref_blocks_to_use:
|
|
log.info(f"storing to lynx ref buffer for block {block_idx}")
|
|
lynx_ref_buffer[block_idx] = lynx_ref_feature
|
|
#uni3c controlnet
|
|
if uni3c_controlnet_states is not None and b < len(uni3c_controlnet_states):
|
|
x[:, :self.original_seq_len] += uni3c_controlnet_states[b].to(x) * uni3c_data["controlnet_weight"]
|
|
#controlnet
|
|
if (controlnet is not None) and (b % controlnet["controlnet_stride"] == 0) and (b // controlnet["controlnet_stride"] < len(controlnet["controlnet_states"])):
|
|
x[:, :self.original_seq_len] += controlnet["controlnet_states"][b // controlnet["controlnet_stride"]].to(x) * controlnet["controlnet_weight"]
|
|
|
|
if lynx_ref_feature_extractor:
|
|
return lynx_ref_buffer
|
|
|
|
if self.enable_teacache and (self.teacache_start_step <= current_step <= self.teacache_end_step) and pred_id is not None:
|
|
self.teacache_state.update(
|
|
pred_id,
|
|
previous_residual=(x.to(original_x.device) - original_x),
|
|
accumulated_rel_l1_distance=accumulated_rel_l1_distance,
|
|
previous_modulated_input=previous_modulated_input
|
|
)
|
|
elif self.enable_magcache and (self.magcache_start_step <= current_step <= self.magcache_end_step) and pred_id is not None:
|
|
self.magcache_state.update(
|
|
pred_id,
|
|
residual_cache=(x.to(original_x.device) - original_x)
|
|
)
|
|
elif self.enable_easycache and (self.easycache_start_step <= current_step <= self.easycache_end_step) and pred_id is not None:
|
|
x_out = x.clone().to(original_x.device)
|
|
output_change = (x_out - original_x).abs().mean()
|
|
input_change = (original_x - x_out).abs().mean()
|
|
self.easycache_state.update(
|
|
pred_id,
|
|
previous_raw_input=original_x,
|
|
previous_raw_output=x_out,
|
|
cache=x.to(original_x.device) - original_x,
|
|
k = output_change / input_change,
|
|
accumulated_error = 0.0,
|
|
cache_ovi = x_ovi.clone().to(original_x.device) - original_x_ovi if x_ovi is not None else None
|
|
)
|
|
|
|
|
|
|
|
if self.enable_easycache and (self.easycache_start_step <= current_step <= self.easycache_end_step) and pred_id is not None:
|
|
self.easycache_state.update(
|
|
pred_id,
|
|
previous_raw_output=x.clone(),
|
|
)
|
|
|
|
if self.ref_conv is not None and fun_ref is not None:
|
|
fun_ref_length = fun_ref.size(1)
|
|
x = x[:, fun_ref_length:]
|
|
grid_sizes = torch.stack([torch.tensor([u[0] - 1, u[1], u[2]]) for u in grid_sizes]).to(grid_sizes.device)
|
|
|
|
if end_ref_latent is not None:
|
|
end_ref_latent_length = end_ref_latent.size(1)
|
|
x = x[:, :-end_ref_latent_length]
|
|
grid_sizes = torch.stack([torch.tensor([u[0] - end_ref_latent_frames, u[1], u[2]]) for u in grid_sizes]).to(grid_sizes.device)
|
|
|
|
if attn_cond is not None:
|
|
x = x[:, :self.original_seq_len]
|
|
grid_sizes = torch.stack([torch.tensor([u[0] - 1, u[1], u[2]]) for u in grid_sizes]).to(grid_sizes.device)
|
|
|
|
|
|
x = x[:, :self.original_seq_len]
|
|
|
|
x = self.head(x, e.to(x.device), temp_length=F)
|
|
|
|
if x_ovi is not None:
|
|
x_ovi = self.audio_model.head(x_ovi, e_ovi.to(x_ovi.device))
|
|
grid_sizes_ovi = [gs[0] for gs in grid_sizes_ovi]
|
|
assert len(x) == len(grid_sizes_ovi)
|
|
x_ovi = [u[:gs] for u, gs in zip(x_ovi, grid_sizes_ovi)]
|
|
x_ovi = [u.float() for u in x_ovi]
|
|
|
|
x = self.unpatchify(x, original_grid_sizes) # type: ignore[arg-type]
|
|
x = [u.float() for u in x]
|
|
return (x, x_ovi, pred_id) if pred_id is not None else (x, x_ovi, None)
|
|
|
|
def unpatchify(self, x, grid_sizes):
|
|
r"""
|
|
Reconstruct video tensors from patch embeddings.
|
|
|
|
Args:
|
|
x (List[Tensor]):
|
|
List of patchified features, each with shape [L, C_out * prod(patch_size)]
|
|
grid_sizes (Tensor):
|
|
Original spatial-temporal grid dimensions before patching,
|
|
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)
|
|
|
|
Returns:
|
|
List[Tensor]:
|
|
Reconstructed video tensors with shape [C_out, F, H / 8, W / 8]
|
|
"""
|
|
|
|
c = self.out_dim
|
|
out = []
|
|
for u, v in zip(x, grid_sizes.tolist()):
|
|
u = u[: math.prod(v)].view(*v, *self.patch_size, c)
|
|
u = torch.einsum("fhwpqrc->cfphqwr", u)
|
|
u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)])
|
|
out.append(u)
|
|
return out
|