You've already forked ComfyUI-WanVideoWrapper
mirror of
https://github.com/kijai/ComfyUI-WanVideoWrapper.git
synced 2026-01-26 23:41:35 +03:00
65 lines
2.3 KiB
Python
65 lines
2.3 KiB
Python
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch
|
|
import math
|
|
|
|
class FeedForwardSwiGLU(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
hidden_dim: int,
|
|
multiple_of: int = 256,
|
|
):
|
|
super().__init__()
|
|
hidden_dim = int(2 * hidden_dim / 3)
|
|
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
|
|
|
self.dim = dim
|
|
self.hidden_dim = hidden_dim
|
|
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
|
|
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
|
|
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
|
|
|
|
def forward(self, x):
|
|
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
|
|
|
class TimestepEmbedder(nn.Module):
|
|
"""
|
|
Embeds scalar timesteps into vector representations.
|
|
"""
|
|
|
|
def __init__(self, t_embed_dim, frequency_embedding_size=256):
|
|
super().__init__()
|
|
self.t_embed_dim = t_embed_dim
|
|
self.frequency_embedding_size = frequency_embedding_size
|
|
self.mlp = nn.Sequential(
|
|
nn.Linear(frequency_embedding_size, t_embed_dim, bias=True),
|
|
nn.SiLU(),
|
|
nn.Linear(t_embed_dim, t_embed_dim, bias=True),
|
|
)
|
|
|
|
@staticmethod
|
|
def timestep_embedding(t, dim, max_period=10000):
|
|
"""
|
|
Create sinusoidal timestep embeddings.
|
|
:param t: a 1-D Tensor of N indices, one per batch element.
|
|
These may be fractional.
|
|
:param dim: the dimension of the output.
|
|
:param max_period: controls the minimum frequency of the embeddings.
|
|
:return: an (N, D) Tensor of positional embeddings.
|
|
"""
|
|
half = dim // 2
|
|
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half)
|
|
freqs = freqs.to(device=t.device)
|
|
args = t[:, None].float() * freqs[None]
|
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
|
if dim % 2:
|
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
|
return embedding
|
|
|
|
def forward(self, t, dtype):
|
|
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
|
if t_freq.dtype != dtype:
|
|
t_freq = t_freq.to(dtype)
|
|
t_emb = self.mlp(t_freq)
|
|
return t_emb |